Who is the best Formula One driver?

Erik-Jan van Kesteren & Tom Bergkamp

"Why would you like that?"

"Such a stupid sport!"

"It's all about the cars anyway!"

Who is the best Formula One driver? A Bayesian multilevel Beta regression model

Erik-Jan van Kesteren & Tom Bergkamp

Outline

- 1. Data collection & pre-processing
- 2. Measuring performance
- 3. Model development
- 4. Model estimation & checks
- 5. Inferences & conclusions

The data

Formula One 101

The hybrid era of F1

- Rules & regulations change
- Most notably: engine regulations
- 2014-2021 is known as the "hybrid era"
- Every year/season has around 21 races

The constructors

- There are around 10 teams
- Two cars each, new cars each year
- Teams change owners & name
- New teams enter sometimes
- Ferrari, Mercedes & Red Bull are rich

The drivers

- Drivers usually enter F1 with a "junior" team
- They change team: everyone wants to go to the best teams
- Drivers are compared to their teammates a lot

The data

- We want data about all race results of the hybrid era
- It exists! Ergast
 - An application programming interface (API)
 - A full data dump
 - Updated after every race
 - We got permission to use & reupload on our code repo!

Ergast Developer API

Database Images

Complete images of the Ergast database are published shortly after each race under the Attribution-NonCommercial-ShareAlike 3.0 Unported Licence.

The structure of the database is shown in an Entity Relationship Diagram and explained in the Database User Guide. The tables were created using: f1db_tables.sql

The database images were last updated on: 28/03/2022

MySQL Database Images

These are MySQL (5.7) data dumps. The ANSI version may be easier to import into other database formats. The character encoding is "utf8" in both versions.

f1db.sql.gz MySQL 5.7 database dump

f1db_ansi.sql.gz "ANSI compatible" MySQL database dump

CSV Database Tables

The database can also be downloaded as a set of CSV files which can be imported into spreadsheets and other types of software:

Meta

FAQ Feedback

Links

Latest News Bug Reports

Contact Us

Programmable Web

Index

API Documentation

Race Schedule Race Results

Qualifying Results Sprint Qualifying Results

Driver Information

Circuit Information Finishing Status

Constructor Information

Season List

Standings

Lap Times Pit Stops

Development Tools Query Database

Database Images

Application Gallery

Terms & Conditions

Log in Entries RSS Comments RSS WordPress.org

Search for:

Search

Disclaimer

f1db_csv.zip

in the User Guide.

The author disclaims all responsibility for any loss or damage arising from the use of these database images and cannot guarantee the accuracy of the data.

Each CSV file contains a single database table. The text encoding is UTF-8 and

the first line of each file contains the column headers. The tables are described

Attribution

Attribution is optional but appreciated when addressing a technical audience. A reference to "Ergast" with a link back to this site is sufficient.

The data: preprocessing

- Download Ergast data
- Join race results with driver properties & circuit properties
- Add information scraped from Wikipedia:
 - Weather (wet or dry race)
 - Circuit type (street circuit / permanent circuit)
- Some cleanup & variable type conversion

The data: tidy!

A tibble: 3,267 x 9

	driver	constructor	year	round	circuit	position	weather_type	circuit_type	status
	<fct></fct>	<fct></fct>	<int></int>	<int></int>	<chr></chr>	<int></int>	<fct></fct>	<fct></fct>	<fct></fct>
1	rosberg	mercedes	2014	1	albert_park	1	dry	street	Finished
2	kevin_magnussen	mclaren	2014	1	albert_park	2	dry	street	Finished
3	button	mclaren	2014	1	albert_park	3	dry	street	Finished
4	alonso	ferrari	2014	1	albert_park	4	dry	street	Finished
5	bottas	williams	2014	1	albert_park	5	dry	street	Finished
6	hulkenberg	force_india	2014	1	albert_park	6	dry	street	Finished
7	raikkonen	ferrari	2014	1	albert_park	7	dry	street	Finished
8	vergne	toro_rosso	2014	1	albert_park	8	dry	street	Finished
9	kvyat	toro_rosso	2014	1	albert_park	9	dry	street	Finished
10	perez	force_india	2014	1	albert_park	10	dry	street	Finished

... with 3,257 more rows

Measuring "performance"

The best race result is finishing first The worst race result is finishing last Sometimes, a contestant does not finish at all!?

Dealing with non-finishes

Many incidents in F1

- Drivers make mistakes
- Constructors forget screws
- Random stuff happens
- The world is complicated

We don't have a way to attribute notfinishing to drivers or constructors or randomness!

SIMPLIFYING ASSUMPTION

• Look only at *finished* races

Different drivers' finish positions

Conditional on finishing the race

Which is a better performance?

Which is a better performance?

A

Finishing 14th in a race where 20 people finish

Which is a better performance?

A

Finishing 14th in a race where 20 people finish

B

Finishing 14th in a race where 14 people finish

Solution: the proportion

We measure performance as the proportion of drivers beaten

- For each driver for each race, the proportion of drivers who finished behind the driver's position
- Smooth this estimate using recommended procedure from the R package betareg

Different drivers' results

Proportion of finished drivers outperformed

Smoothed proportion of outperformed drivers

Modeling performance

Model for a proportion

- We use Beta regression (Ferrari & Cribari-Neto, 2004)
- Similar to exponential-family generalized linear model
- Outcome distribution: Beta with non-standard parameterization (mean and precision parameters)

$$p(y) = Beta(\mu, \phi) = \frac{\Gamma(\phi)}{\Gamma(\mu\phi)\Gamma((1-\mu)\phi)} y^{\mu\phi-1}(1-y)^{(1-\mu)\phi-1}$$

• We make a linear model for $logit(\mu)$

Model for a proportion

Mean performance is the result of four components

- 1. Average driver skill: β_d
- 2. Driver form in a season: β_{ds}
- 3. Average constructor (car) advantage: β_c
- 4. Constructor form in a season: β_{cs}

So for driver d, constructor c in season s:

$$logit(\mu_{dcs}) = \beta_d + \beta_{ds} + \beta_c + \beta_{cs}$$

Multilevel model

49 drivers, 19 constructors, 8 seasons, 19-22 races

 $y_{dcsr} \sim Beta(\mu_{dcs}, \phi)$ $logit(\mu_{dcs}) = \beta_d + \beta_{ds} + \beta_c + \beta_{cs}$ $\beta_d \sim \mathcal{N}(0, \sigma_d^2)$ $\beta_{ds} \sim \mathcal{N}(0, \sigma_{ds}^2)$ $\beta_c \sim \mathcal{N}(0, \sigma_c^2)$ $\beta_{cs} \sim \mathcal{N}(0, \sigma_{cs}^2)$

i.i.d. races within season, driver, constructor

Mean as function of 4 components:

Driver average skill random intercept

Driver seasonal form random intercept

Constructor average advantage random intercept

Constructor seasonal form random intercept

Parameter interpretation

$$logit(\mu_{dcs}) = \beta_d + \beta_{ds} + \beta_c + \beta_{cs}$$

- Proportion outcome per race so no intercept needed
- Parameters are on the *log odds-ratio scale*
- If all parameters are 0, then we have:

$$E[y_{dcsr}] = \mu_{dcs} = logit^{-1}(0 + 0 + 0 + 0) = 0.5$$

 This is an average driver with an average car in an average season = 0.5 as result makes sense!

Estimating this model

The data again

A tibble: 2,677 x 5

	driver	constructor	year	round	prop_trans
	<fct></fct>	<fct></fct>	<int></int>	<int></int>	<dbl></dbl>
1	rosberg	mercedes	2014	1	0.964
2	kevin_magnussen	mclaren	2014	1	0.893
3	button	mclaren	2014	1	0.821
4	alonso	ferrari	2014	1	0.75
5	bottas	williams	2014	1	0.679
6	hulkenberg	force_india	2014	1	0.607
7	raikkonen	ferrari	2014	1	0.536
8	vergne	toro_rosso	2014	1	0.464
9	kvyat	toro_rosso	2014	1	0.393
10	perez	force_india	2014	1	0.321

... with 2,667 more rows

Model estimation in R

library(brms)

```
frm <-
```

fit <- brm(
 formula = frm,
 family = Beta(),
 data = f1_dat
)</pre>

Obligatory convergence check

- 10k posterior samples across 4 chains
- 1000 burn-in iterations
- Everything looks good!
- Rhats all <1.01
- Etc.

Posterior predictive check

- Does the model make sense?
- Compare observed proportion to model-implied proportion

2019 season posterior predictive check

observed simulated

Inference & conclusions

Dear oracle model, How skilled was each driver in 2021?

According to the model:

- Hiring Hamilton as opposed to an average driver yields an odds-ratio of defeating other drivers of 2.46 [1.60 – 3.86]
- If your team with an average driver beats 50% of the competitors on average, then with Hamilton you will beat 71%
- 2.46 / (1 + 2.46) = 0.71 [0.61 0.79]

Dear oracle model, How did the constructors compare in the hybrid era?

According to the model:

- If you are an average driver at an average team, moving to hybrid-era Mercedes yields an average odds-ratio of 2.97 [1.91 – 4.58]
- If you placed middle-of-the road before, you will now on average beat three quarters of the field!

• 2.97 /
$$(1 + 2.97) = 0.75 [0.66 - 0.82]$$

Dear oracle model, How did this change over time?

F1 constructor advantage trajectories

Hybrid-era (2014-2021) constructor advantage, accounting for yearly driver skill.

F1 constructor advantage trajectories

FIA reaches 'settlement' with Ferrari following 2019 engine investigation

28 February 2020

FIA FERRARI

Formula 1's governing body the FIA say they have reached a "settlement" with Ferrari following a long-running analysis into the Italian team's 2019-spec power unit.

Ferrari's power unit emerged as the class of the field in 2019, the red cars of Sebastian Vettel and Charles Leclerc displaying a power advantage over their rivals and enjoying impressive straight line speed.

Dear oracle model,

Would Hamilton in an Alfa Romeo car beat Räikkönen in a Mercedes in 2021?

Dear oracle model, Is it weird to like Formula One? Is Formula One a stupid sport?

Dear oracle model, Is Formula One all about the car?

Car & driver contributions

Std. Dev.	Estimate	l-89% CI	u-89% Cl	
σ_c	0.95	0.69	1.29	
σ_{cs}	0.43	0.34	0.52	
σ_d	0.40	0.27	0.54	
σ_{ds}	0.15	0.07	0.22	

- Because components are all independent, we can do this:
 - $\sigma_c^2 + \sigma_{cs}^2 = 1.087$ (variance of car components)
 - $\sigma_d^2 + \sigma_{ds}^2 = 0.178$ (variance of driver components)
- Proportion of variance in performance due to the car:

$$\frac{1.087}{1.087+0.178} = 86\%$$

It's not all about the car

Almost though... ③

In conclusion...

- F1 performance model with open data
- Complex multilevel structure: races within seasons, drivers and constructors
- Measuring performance as proportion
- Bayesian Beta regression model with logit link:
 - Posterior predictive check
 - Estimates with uncertainty for many different quantities
- It's not all about the car!

More info

All code + data:

github.com/vankesteren/f1model

Preprint:

arxiv.org/abs/2203.08489

e.vankesteren1@uu.nl @vankesteren t.l.g.bergkamp@rug.nl @MisterBergkamp

Thoughts & issues

- Everything is relative & on logit scale just as with Elo score in chess
- Are parameters identified?
 - If driver stays with same team & teammate the whole time, we cannot disentangle β_d , β_c , β_{cy} !
 - How do the priors affect these?