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Chapter 1

Introduction

The first time I encountered structural equation modeling (SEM) was in 2013,
in a statistics class during my undergraduate studies in social science. The
class had never seen SEM before, but in a matter of a few weeks we were
dealing with rather complex statistical topics such as parameter constraints,
model comparison, fit statistics, measurement error, and scale construction. I
distinctly remember that we found the graphical approach to creating models
very intuitive, and at the end of this course we were capable of testing complex
hypotheses using different types of data. In hindsight, it is surprising how far
we got in how little time. SEM has the rare combination of generality and
simplicity, of flexibility and convenience.

This combination has made SEM a widely popular method for data analysis
in the social and behavioural sciences. It is especially useful in research where
the constructs of interest cannot be measured directly, or where the measure-
ment instruments are fallible. An example of a traditional research situation
for SEM is in social science, where a researcher may want to know how the
welfare of Europeans (construct 1) affects their trust in institutions (construct
2). Each construct may be measured by three (or more) questions to which
the answer is given on a scale from completely disagree to completely agree,
using a questionnaire such as the European Social Survey (Norwegian Centre
for Research Data, 2018). The researcher can create a figure which closely
matches their underlying theoretical model (Figure 1.1), and SEM is the glue
that binds this figure to the data: each of the arrows in the figure represents
a parameter indicating the relation between one variable and another. The
parameter of interest for our researcher would be the arrow from welfare to
trust, and SEM can estimate this parameter and its standard error, allowing
for statistical inference about the research question.
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Welfare Trust

x1 x2 x3 x4 x5 x6

Figure 1.1 Graphical illustration of a structural equation model for the
relation between welfare and trust, where each construct is measured through
three survey questions. Residual variances not shown for clarity.

SEM encompasses many analysis techniques, including factor analysis
(Brown, 2006), path modeling and mediation analysis (MacKinnon, 2008),
multigroup models (Sörbom, 1974), multitrait-multimethod models (Camp-
bell & Fiske, 1959; Kenny, 1976), and longitudinal latent variable models
(Asparouhov, Hamaker, & Muthén, 2018; Bollen & Curran, 2006). However,
despite its convenience and flexibility, SEM is reaching its limits in the mod-
ern data landscape. Classic survey and experimental research is being sup-
plemented (and sometimes even supplanted) by research using measurements
from register data, wearable sensors, images, internet databases, genetic se-
quencing, advanced brain imaging techniques, and more. These instruments
can measure thousands of variables and / or millions of samples at a time.
As a result, the pipelines for data processing can involve many steps, and the
models used to process these types of data may have thousands of parameters
– a size almost unheard of for SEM. But the problems of fallible measurement
do not disappear in this modern data landscape, and many research questions
using this data still involve causal relations between latent constructs. Thus,
the analyses made possible by SEM can greatly benefit research using these
new instruments.

The goal of this dissertation is to make SEM analyses available to a wider
range of these modern datasets. To this end, I develop several solutions to
problems encountered in the application of SEM to such data. An example of
a problem is that of dimensionality: in traditional implementations, SEM be-
comes impractical when the number of variables becomes large. This holds for
data which is naturally high-dimensional, but can also occur when researchers
want to include the effect of many transformations (or basis functions) of the
variables in the data. In the coming chapters, I extend traditional SEM by
borrowing computational techniques from machine learning (Chapter 2), and
I show how to create statistical models in situations constrained by high di-
mensionality (Chapter 3), biological structure (Chapter 4), privacy concerns
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(Chapter 5) and algorithmic fairness (Chapter 6).
The following sections provide theoretical background for the solutions pre-

sented in this dissertation. There are three relatively independent sections –
each can be skipped by readers familiar with their contents. First, the SEM
approach and its notation are succinctly introduced in Section 1.1. Second,
Section 1.2 provides an accessible tutorial on several computational tools for
optimization, as they are used in many procedures presented in this disserta-
tion. Third, Section 1.3 makes explicit some of the tacit views on model spec-
ification, generalizability, and regularization at the basis of this dissertation.
Finally, Section 1.4 provides an outline for the remainder of the dissertation.

1.1 Structural equation models

Structural equation models are linear models for multivariate data (Bollen,
1989; Jöreskog, 1969). The term structural equation model is quite unfortu-
nate: it does not describe well what the framework actually does. Very similar
techniques are used in many fields under different names (e.g., Partial Least
Squares, Gaussian Graphical Models, Bayesian networks). Perhaps a more in-
formative term would be “Gaussian linear latent variable model”, which makes
explicit two of the most important design elements of SEM:

• linearity of the relations between the variables.

• normality, Gaussian distribution for the residuals of the latent variables
and the residuals of the observed variables.

SEM is a combination of a linear measurement model (relating the latent vari-
ables to the observed variables) and a linear structural model (relating the
latent variables to each other). One of the most common ways of representing
SEM is the LISREL “all-y” form; below I combine the compact notations by
Neudecker and Satorra (1991) and Oberski (2014):

x = ν +Λη + ε (Measurement model)
η = α+B0η + ξ (Structural model)

(1.1)

where x represents a vector of observable variables of length P , η repre-
sents the M latent variables, and ε and ξ are random vectors such that ε is
uncorrelated with ξ. The parameters of the model are encapsulated in four
matrices: Λ P RPˆM contains the factor loadings, Ψ P RMˆM contains the
covariance matrix of ξ, B0 P RMˆM contains the regression parameters of the
structural model, and Θ P RPˆP contains the covariance matrix of ε.

The main advantage of the linearity assumption in combination with the
normality of ε and ξ is that the latent variables can be marginalized out easily,
and the likelihood takes a very convenient form:

p(x) = N (µ(θ), Σ(θ)) (1.2)
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The SEM likelihood is determined by the P -dimensional model-implied co-
variance matrix Σ and mean vector µ, both functions of the free parameters
θ. Σ(θ) and µ(θ) have the following form:

Σ(θ) = ΛB´1ΨB´TΛT +Θ

µ(θ) = ν +ΛB´1α
(1.3)

where B = I ´B0 is assumed to be non-singular – that is, the structural path
model relating the M latent variables to each other is assumed to be identified.

Structural parameters are an important part of SEM because they rep-
resent causal relations between constructs: the B0 matrix encodes an entire
directed graph of relationships. Specifically, causality is an assumption of these
parameters (Bollen, 1989, p. 4):

The term “structural” stands for the assumption that the parame-
ters are not just descriptive measures of association but rather that
they reveal an invariant “causal” relation.

SEM can be considered an applied linear Gaussian form of the broader class
of causal models as popularized by Pearl (2009). In causal modeling, the
causal graph representing the researcher’s theoretical model implies a certain
independence structure on the observed variables, through factorization of the
joint probability p(x). SEM does the same via the implied covariance matrix
Σ(θ), which considers only linear dependence.

1.2 Computation and optimization
Many of the chapters in this dissertation rely heavily on computational
parameter estimation techniques to expand the area of application for SEM
and related models. The goal of this section is to provide a tutorial on a
few basic versions of these methods. As a running example, I use a linear
regression model, and throughout the tutorial I show R code for each algorithm.

For simple linear regression, the likelihood is as follows:

p(y) = N (Xβ, σ2) =
1

?
2πσ2

exp
[

´
1

2σ2
}y ´ Xβ}2

]
(1.4)

where y P RNˆ1 is a vector of outcome values, X P RNˆP is a design matrix,
and β is a P -vector of regression parameters. The log-likelihood, denoted ℓ, is
usually simpler to work with:

ℓ = ´
1

2
log(2πσ2) ´

1

2σ2
}y ´ Xβ}2 (1.5)

In maximum likelihood (ML) estimation, the objective is to find the param-
eters β that maximize the (log-)likelihood according to the following intuition:
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we want to find the values of the parameters for which the data is most likely,
given the model structure. Equation 1.5 shows that the value for β which
minimizes the residual sum of squares }y´Xβ}2 (RSS) is also the value which
maximizes the log-likelihood. This makes the ML estimates equivalent to the
“ordinary least squares” (OLS) estimates in the framework of linear regression.

In this section, I show how to obtain the ML/OLS estimates for β using
several different optimization methods. I will use a running data example,
where N = 100 and P = 10, artificially generated as follows:

1 set.seed(45)
2 N <- 100
3 P <- 10
4 S <- toeplitz(1/(1:P)^0.707)
5 X <- matrix(rnorm(N*P), N) %*% chol(S)
6 b <- matrix(rnorm(P))
7 y <- X %*% b + rnorm(N, sd = sqrt(crossprod(b, S %*% b)))

In this code, X is sampled from a multivariate normal distribution with a mean
of 0 and a Toeplitz-structured covariance matrix with smaller values further
from the diagonal. Line 7 sets the true proportion of variance explained in y
to 0.5.

1.2.1 Gradient descent

One of the simplest ways to optimize a convex function such as the least squares
objective is through gradient descent (Cauchy, 1847). The idea is to take
steps of size s in the direction of the negative gradient – the vector of partial
derivatives – until it disappears. For convex functions, when the gradient is 0,
a global minimum is obtained.

The gradient ∇ of the RSS with respect to β is

∇(β) =
B

Bβ
(y ´ Xβ)T (y ´ Xβ) = ´2XT (y ´ Xβ) (1.6)

(Petersen & Pedersen, 2012, eq. 84). The gradient of the RSS is equal to the
score function in a maximum likelihood context (up to a multiplicative con-
stant). Using the classic gradient descent algorithm, we initialize the estimates
β̂ and then take steps of size s in the direction of the negative gradient:

β̂
(i+1)

= β̂
(i)

´ s ¨ ∇(β̂
(i)
) (1.7)

In code, iteratively updating the estimates of β is shown below, where the
gradient from Equation 1.6 is computed on line 6 and the update from Equation
1.7 happens on line 7.
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1 s <- .001 # step-size
2 maxit <- 1e6 # maximum iterations
3 tol <- 1e-8 # convergence tolerance
4 bhat <- matrix(0, P) # initial values for beta
5 for (i in 1:maxit) {
6 grad <- -2 * crossprod(X, y - X %*% bhat)
7 bhat <- bhat - s * grad
8 if (all(abs(grad) < tol)) break
9 }

A visual display of this algorithm for the synthetic dataset is shown in
Figure 1.2. Panel A shows a steady improvement in the RSS value over the
iterations. Panel B shows the paths taken by the 10 parameters as the algo-
rithm progresses, starting at the initial values of 0 and ending at the OLS/ML
estimates. Panel C shows how the estimates for the first two parameters move
across the loss surface from their starting value to their final estimates.
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Figure 1.2 Visualization of 10-parameter gradient descent for linear regres-
sion. Panel A shows the residual sum of squares over the iterations (in log
scale) as it approaches its minimum, panel B shows the parameter paths over
iterations (in log scale), and panel C visualizes the paths of the first two pa-
rameters on the loss surface (contours, conditional on the final estimates of
the remaining 8 parameters) as they approach the minimum.

The gradient method is a very flexible technique for optimizing functions of
many different types. For convex functions, it will find the global minimum, but
with small additions such as multiple starts, it is capable of optimizing more
complicated functions too. However, a nontrivial problem for the gradient
method is the choice of s. If s is too large, the method will “overshoot” the
minimum; if s is too small, the steps may be too small and the algorithm may
not converge in reasonable time at all.

1.2.2 Newton-Raphson optimization

Second-order methods add information about the curvature of the objective for
each parameter to replace the predefined step-size. Specifically, s in Equation
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1.7 is replaced by the inverse of the Hessian matrix H, the matrix of second
derivatives:

β̂
(i+1)

= β̂
(i)

´ H´1(β̂
(i)
)∇(β̂

(i)
) (1.8)

One intuition about this is the following: if the objective for a parameter
value is flat, the steps in that direction should be large because otherwise the
objective will not change much; if the objective is very curved, small steps
should be taken to avoid overshooting a minimum. For our linear regression
case, the matrix of second derivatives is the following:

H(β) =
B

Bβ
∇(β) =

B

Bβ
´ 2XT (y ´ Xβ) = 2XTX (1.9)

(Petersen & Pedersen, 2012, eq. 78). Plugging this into Equation 1.8 yields
the Newton-Raphson algorithm for linear regression:

β̂
(i+1)

= β̂
(i)

´ (2XTX)´1(´2XT (y ´ Xβ̂
(i)
))

= β̂
(i)

+ (XTX)´1XT (y ´ Xβ̂
(i)
)

(1.10)

I could now show the code for this algorithm, but it is more insightful to further
simplify it:

β̂
(i+1)

= β̂
(i)

+ (XTX)´1XT (y ´ Xβ̂
(i)
)

= β̂
(i)

+ (XTX)´1XTy ´ (XTX)´1XTXβ̂
(i)

= β̂
(i)

+ (XTX)´1XTy ´ β̂
(i)

= (XTX)´1XTy

(1.11)

Equation 1.11 shows that this algorithm does not depend on β̂
(i)

at all! In
other words, no matter where you start, the Newton-Raphson method for our
problem converges in a single iteration to the least squares (ML) estimates.
In general, this method always converges in a single iteration for quadratic
functions. In code, this amounts to the following single line to obtain the
estimates for β:

1 bhat <- solve(crossprod(X), crossprod(X, y))

This analytic solution is very useful, and it is the default way for estimating
models of this kind. However, there are two problems with this method: (a)
the Gram matrix (XTX) needs to be invertible, which it is not when P ą N ,
and (b) even if the Gram matrix is invertible, the computational complexity of
this operation grows quickly with increasing P . In addition, for optimization
problems more complex than linear regression, the Hessian may not be available
at all, if the likelihood is not twice continuously differentiable. In many modern
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data problems, these issues become pertinent: researchers are collecting more
and more high-dimensional data (Chapter 3), partitioned data (Chapter 5), and
data for which they may want to apply regularization (Section 1.3; Chapter
2). In this dissertation, I make use of variations on two main optimization
algorithms to solve such issues: coordinate descent and adaptive first-order
optimizers.

1.2.3 Coordinate descent

The method of coordinate descent (e.g., Wright, 2015) is perhaps even simpler
than the gradient descent method. It can be seen as a kind of meta-algorithm
for multiparameter optimization. The idea is to pick one coordinate (parame-
ter) at a time and optimize it using your method of choice, conditional on the
current values of the other parameters. Then, you move on to the next com-
ponent either randomly (randomized coordinate descent) or in order, cycling
through the parameters over and over (cyclic coordinate descent). A famous
application of coordinate descent in the field of statistics is for elastic net regu-
larized regression, as implemented in glmnet (Friedman, Hastie, & Tibshirani,
2010).

In the context of linear regression, the closed-form univariate estimate β̂p is
cov(xp,y)/var(xp) (e.g., Casella & Berger, 2002, p. 551). Using our centered
design matrix X, we can equivalently write β̂p = xT

p y/x
T
p xp. To compute

estimates conditional on values for the other parameters we replace y by the
residual with respect to the parameters excluding βp: ϵ̂-p (Friedman et al.,
2010). This leads to the following algorithm:

ϵ̂(i)-p = y ´ X-pβ̂
(i)

-p

β̂(i+1)
p = xT

p ϵ̂
(i)
-p /x

T
p xp

(1.12)

A simple R implementation of the cyclic version of coordinate descent is
shown below, where the algorithm is stopped when the parameter values do
not change (crudely approximating a vanishing gradient). The update of the
pth parameter happens on line 8.

1 maxit <- 1e6 # maximum iterations
2 tol <- 1e-8 # convergence tolerance
3 bhat <- matrix(0, P) # initial values for beta
4 bold <- bhat # previous values for beta
5 for (i in 1:maxit) {
6 for (p in 1:P) {
7 res <- y - X[,-p] %*% bhat[-p,]
8 bhat[p,] <- crossprod(X[,p], res) / crossprod(X[,p])
9 }

10 if (all(abs(bold - bhat) < tol)) break
11 bold <- bhat
12 }

8



Figure 1.3 shows visually the progress of this algorithm for our example
linear regression problem. The coordinate-wise updating procedure is clearly
visible in panel C, where steps happen either horizontally or vertically, and in
panel B which shows a step pattern rather than a smooth updating pattern as
in Figure 1.2.
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Figure 1.3 Visualization of 10-parameter coordinate descent for linear re-
gression. Panel A shows the residual sum of squares over the iterations (in
log scale) as it approaches its minimum, panel B shows the parameter paths
over iterations (in log scale), and panel C visualizes the paths of the first two
parameters on the loss surface (contours, conditional on the final estimates
of the remaining 8 parameters) as they approach the minimum.

The advantage of coordinate descent is that the P ˆ P Hessian matrix
does not need to be directly inverted, and thus the computational load is
relatively low for large P . In Chapter 3 I show a situation where P is so large
that inverting the Hessian is not possible, but a good approximation to the
parameter estimates is available in a random coordinate descent framework. In
Chapter 5 I show a situation of vertically partitioned data where it is impossible
to obtain the full Hessian, but blockwise cyclic coordinate descent helps with
obtaining the ML estimates of generalized linear models.

1.2.4 Adaptive first-order optimizers

Another alternative for situations in which the Hessian is unavailable or com-
putationally expensive is to approximate H´1 using change in the gradients.
There are many members in this family of quasi-Newton optimization methods,
such as the Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm (Fletcher,
2013), which is used widely for optimization of statistical models (e.g., Rosseel,
2012, used in Chapter 4). Similar (but simpler) techniques are being applied in
the field of deep learning, where parameters are numerous, Hessians unwieldy,
but gradients easy to compute (Goodfellow, Bengio, & Courville, 2016). Here,
the entire history of gradients is being used to dynamically adapt the step-size
per parameter, according to the intuition that if the gradients do not change
much, the step-size can be bigger, and if they change a lot, the step-size should
be reduced.
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A particularly popular algorithm in this field is Adam (Kingma & Ba, 2014),
which contains two improvements to the default gradient descent framework.
First, the step direction m in Adam is an exponentially decaying average of
the history of gradient directions. This makes the optimization path smooth,
avoiding sharp turns, similar to the effect of momentum on a physical ball
rolling on a surface. Second, for the step-size Adam uses a base value divided
by the square root of v, an exponentially decaying average of the history of
squared gradients. v can be interpreted as the variance, or uncertainty, around
each element of the gradient. The more uncertain the direction, the smaller
the step-size (for more information, see Appendix A.1).

A basic implementation of Adam is shown below. The main updates are
on lines 11, 12, 13, and 16, and the remaining lines are used for bias-correction
and convergence checking.

1 s <- 0.001 # base step-size
2 gamma <- c(0.9, 0.999) # decay values
3 maxit <- 1e6 # maximum iterations
4 tol <- 1e-8 # convergence tolerance
5
6 bhat <- matrix(0, P) # initial values for beta
7 m <- matrix(0, P) # first moment
8 v <- matrix(0, P) # second moment
9

10 for (i in 1:maxit) {
11 grad <- -2 * crossprod(X, y - X %*% bhat)
12 m <- gamma[1] * m + (1 - gamma[1]) * grad
13 v <- gamma[2] * v + (1 - gamma[2]) * grad^2
14 mhat <- m / (1 - gamma[1])
15 vhat <- v / (1 - gamma[2])
16 bhat <- bhat - s * mhat / (sqrt(vhat) + 1e-8)
17 if (all(abs(grad) < tol)) break
18 }

Visualizing the optimization path of Adam (Figure 1.4, panel C) shows a
smooth path, almost like a ball rolling across the RSS function surface. This
behaviour is particularly useful in the case of non-smooth objectives, flat spots,
and local minima: given enough momentum, the ball will continue rolling where
default gradient descent may get stuck.
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Figure 1.4 Visualization of 10-parameter Adam for linear regression. Panel
A shows the residual sum of squares over the iterations (in log scale) as it
approaches its minimum, panel B shows the parameter paths over iterations
(in log scale), and panel C visualizes the paths of the first two parameters on
the loss surface (contours, conditional on the final estimates of the remaining
8 parameters) as they approach the minimum.

Adam has several crucial advantages: it converges for a wide range of func-
tions with a wide range of base step-sizes; it uses only the gradient, and needs
limited memory and computation; it can be used as a form of stochastic gra-
dient descent for data with many rows, taking in a small batch of data at a
time. Its popularity in deep learning field stems from these advantages. I have
used Adam to extend structural equations with latent variables in Chapter 2,
where penalties and alternative fitting functions for SEM preclude the use of
more traditional Newton-Raphson optimization.

1.3 Generalization and regularization
Why do we compute parameters of linear models? What do we want to learn
from data? When is learning from data useful? One view is that learning
from data means obtaining the ability to approximate new data from the data-
generating process (DGP) under investigation. This view has several names,
e.g., generalization, predictive fit, or predictive validity. From a practical point
of view (my preferred point of view), models which generalize well are useful:
they can be used for prediction or forecasting, and they also have the advantage
that conclusions drawn from them are valid for new data from the same DGP
(although this by no means guarantees “true”; see McElreath, 2020, p. 71
for a good historical example). These are strong arguments in favor of using
generalization as a criterion in model specification and model selection: models
which generalize well are preferred, even if they are not true models.

So how well does a particular model generalize? Unfortunately, the true
level of generalization of a model can never really be known, because the true
DGP is unknown in real-world research. However, generalization error or pre-
dictive fit can be estimated from the sample at hand. There are two historical
schools to this, roughly aligning with the two cultures of statistical model-
ing (Breiman, 2001b): on the one hand there are information criteria (AIC,
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DIC, WAIC), based on asymptotics, likelihood, and degrees of freedom or the
effective number of parameters; on the other hand there are computational
methods, such as train-test splitting, cross-validation and leave-one-out error
estimation. These two schools have the same goal: to estimate the general-
ization error, or how well the model predicts new data. In some cases, these
schools are asymptotically equivalent (see, e.g, Stone, 1977; Browne & Cudeck,
1989; chapter 7 of Gelman et al., 2013).

In using generalization as a model selection criterion, there is a tradeoff:
models which are too simplistic do not generalize well because they miss im-
portant parts of the data-generating process, and models which are too compli-
cated do not generalize well because they tend to explain random noise, over-
fitting to the sample. This bias-variance tradeoff is fundamental to statistical
learning: balancing fit to the sample and complexity of the model (G. James,
Witten, Hastie, & Tibshirani, 2015). Overfitting in particular is a pervasive
problem, and in the context of SEM this problem is compounded by the readily
available metrics for improving model fit (modification indices; Bollen, 1989,
p. 299), and by the established exploratory procedures around model modi-
fication. A popular term for overfitting in this context is “capitalization on
chance” (MacCallum, Roznowski, & Necowitz, 1992).

There are several solutions to the problem of overfitting. An example is
to make the model simpler: instead of a nonlinear spline model with many
knots, a simple linear regression might generalize better. Another way is by
regularization. Generally, regularization is anything which introduces bias in
the parameters to improve generalization (Goodfellow et al., 2016), but often
it amounts to shrinking the parameters towards 0 – a model with a parameter
set to 0 is equivalent to a simpler model without this parameter. There are
many examples of regularization procedures, including ridge estimation, early
stopping, dropout training, Bayesian priors, LASSO penalties, multilevel mod-
eling, data augmentation, and additive noise. All of these procedures prevent
overfitting by adding information about the DGP to the analysis (see Table
1.1).
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Table 1.1 Information encoded in various regularization strategies.

Regularization method Encoded information
Ridge estimation The parameters are closer to 0 than my sample sug-

gests, and they are less correlated than my sample
suggests.

Early stopping The parameters are closer to the initial values than
my sample suggests.

Dropout The parameters have less correlation than my sam-
ple suggests.

Bayesian priors This particular distribution encodes what I know
about these parameters.

LASSO penalty Bet on sparsity: some / most parameters are 0.
Multilevel modeling Observations within groups are similar, so their pa-

rameters are too.
Data augmentation Certain transformations of the data do not change

what they represent, so the chosen parameters
should be robust to them.

Additive noise The parameters should be robust to a specific type
of noise in the observations.

Many regularization methods can be rephrased in terms of each other. For
example, early stopping and dropout are used in neural networks, as they
are computationally cheap alternatives to applying explicit penalties (Good-
fellow et al., 2016, p. 247) or structured priors on the parameters (Nalisnick,
Hernandez-Lobato, & Smyth, 2019; Wager, Wang, & Liang, 2013). I would
even argue that all these available methods are ad-hoc ways of implementing
certain Bayesian priors. In this view, regularization is an inherent part of model
development. Of course, explicitly specifying Bayesian priors is powerful, but it
is also very difficult, and Bayesian estimation can be computationally expensive
(van Erp, Oberski, & Mulder, 2019). Choosing an alternative regularization
method is then not only more convenient, but sometimes even necessary to
make analyses tractable.

In conclusion, I believe that all of these available regularization methods
are useful in creating solutions for modern data problems. However, only a
few of these regularization options are currently available for SEM (Jacobucci,
Grimm, & McArdle, 2016; Merkle & Rosseel, 2015). Therefore, in the first
chapter I create a SEM framework in which all of these options are readily
available, and I show how these can contribute to existing SEM procedures.
Furthermore, in the remainder of this dissertation I add a wide range of prior
knowledge to existing SEM models, either using existing solutions or by devel-
oping new solutions: the brain is largely symmetric (Chapter 4), indicators of
health in the United States exhibit racial bias (Chapter 6), childhood trauma
will only affect a few locations in the genome relevant to stress reactivity (Chap-
ter 3).
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1.4 Outline
In this introduction, I have provided background on three main components
that underlie the following chapters: structural equation modeling, computa-
tion and optimization, and regularization. Not all the chapters focus on all
three components, but they all extensively draw upon the background given
here. For example, although Chapter 4 uses existing solutions for optimiza-
tion, the accompanying software package contains enhancements to stabilize
the estimation procedure. Similarly, Chapter 6 does not explicitly mention
regularization, but the fairness procedure used in this chapter can be seen as
biasing the estimates towards the idealized “fair world” data-generating pro-
cess (Nabi & Shpitser, 2018). Furthermore, Chapter 5 does not mention SEM
at all, yet its contribution can be easily translated to the SEM framework. It
is in the three components of this introduction – SEM, computation, and reg-
ularization – that this dissertation presents solutions to modern data problems.

The remainder of this thesis is organized as follows. In Chapter 2 I intro-
duce a new method of specifying and estimating structural equation models.
This method is based on existing techniques from deep learning and neural
networks. Using this technique, many adjustments such as regularization and
penalization – often used in the analysis of modern data – are at once avail-
able to SEM. I show the advantages of this novel method in three compelling
examples of useful, novel extensions to classical structural equation models.

In Chapter 3 I develop an algorithm to perform mediation analysis (a
special case of SEM) on high-dimensional, epigenetic sequencing data. The
problem with this data is the large number of measurements per sample, up to
hundreds of thousands of values. The algorithm is an alternative for the classic
SEM estimation procedure, which cannot handle such high-dimensional situa-
tions. I make use of the widespread availability of computation to approximate
“regular” mediation analysis, and I show that this new method improves upon
existing high-dimensional mediation methods in various situations.

In Chapter 4 I develop an extension to exploratory factor analysis (EFA;
another special case of SEM) for use in brain imaging data. Procedures such
as factor analysis are often used in this field because it reduces the amount
of data with the smallest possible loss of information – an important step for
further reseach in for example brain development. The extension I present
makes use of the specific prior knowledge that the brain is largely symmetric,
which has not been attempted before in the context of EFA. With various
examples of structural and functional brain imaging data I show the flexibility
of the extension, and I show that this method is an improvement to standard
EFA.

In Chapter 5 I present a solution for the problem of data analysis in the
context of vertically partitioned data, meaning data where the features are
stored at different locations. Privacy-sensitive medical features are an example
of such data. The solution enables two parties to collaborate in estimating
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generalized linear models – including standard errors – by sharing only their
linear prediction of the outcome variable. Using several applied examples I
present an implementation of this solution, which includes encryption to safely
distribute the computations.

Finally, in Chapter 6 I propose a structural equation model to tackle a
different modern data problem: algorithmic fairness. This chapter is based on
a situation where medical predictions based on register data lead to a racially
biased treatment of white patients over black patients. I show in a real-world
dataset that this problem does not occur when using a classical latent variable
model for prediction, in combination with existing techniques for fair infer-
ence.
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Chapter 2

Flexible Extensions to Structural Equation

Models using Computation Graphs

Van Kesteren, E. J., & Oberski, D. L. (2019, in preparation) Structural equation
models as computation graphs. arXiv:1905.04492

Structural equation modeling (SEM) is being applied to ever more
complex data types and questions, often requiring extensions such
as regularization or novel fitting functions. To extend SEM, re-
searchers currently need to completely reformulate SEM and its
optimization algorithm – a challenging and time-consuming task.
In this paper, we introduce the computation graph for SEM, and
show that this approach can extend SEM without the need for
bespoke software development. We show that both existing and
novel SEM improvements follow naturally. To demonstrate, we
introduce three SEM extensions: least absolute deviation estima-
tion, Bayesian LASSO optimization, and sparse high-dimensional
mediation analysis. We provide an implementation of SEM in Py-
Torch – popular software in the machine learning community – to
accelerate development of structural equation models adequate for
modern-day data and research questions.

2.1 Introduction

Structural equation modeling (SEM) is a popular tool in the social and be-
havioural sciences, where it is being applied to ever more complex data
types. For example, SEM extensions now perform variable selection in high-
dimensional situations (Jacobucci, Brandmaier, & Kievit, 2018; van Kesteren
& Oberski, 2019), modeling of intensive longitudinal data (Asparouhov et al.,
2018; Voelkle & Oud, 2013), and analysis of intricate online survey experiments
(Cernat & Oberski, 2019). In these situations, the SEM model often needs to
be reformulated and traditional optimization approaches need to be extended
to obtain parameter estimates – a challenging and time-consuming task. For

Author contributions: EJK & DLO developed the idea. EJK created the software, implemented
the experiments, and wrote the manuscript. DLO provided extensive feedback on all components.
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example, applying SEM to high-dimensional data necessitates parameter pe-
nalization, and special model types such as genomic SEM (Grotzinger et al.,
2019) or network models (Epskamp, Rhemtulla, & Borsboom, 2017) can lead
to alternative fitting functions. Additionally, even before the extension of SEM
to novel data structures there have been several examples of the instability of
the latent variable approach – such as Heywood cases (Kolenikov & Bollen,
2012) and convergence problems in multitrait-multimethod (MTMM) models
(Revilla & Saris, 2013), which may benefit from regularization to obtain a
stable result.

While the current growth of new types of structural equation models is
exciting, developments in SEM are still far from caught up with the state-of-
the-art in modern data analysis. In particular, the machine learning literature
has exploded over the past decades to develop methods that deal with the
complex nature of modern data, making great strides in difficult data analy-
sis problems, including computer vision, natural language processing, and ge-
nomics (see Goodfellow et al., 2016, and the references therein for an overview).
Each of these data sources holds great potential for questions traditionally ad-
dressed in SEM, in particular those found in the social, behavioral, ecological,
or biomedical sciences. However, traditional implementations of SEM are dif-
ficult to integrate with the solutions pioneered in the field of machine learning.

In this paper, we propose allowing direct integration of SEM and methods
from the field of deep learning, by specifying SEM as a computation graph. We
demonstrate the utility of our approach by straightforwardly implementing
three potentially useful extensions to SEM, of which two are novel:

1. We implement Least Absolute Deviation (LAD) estimation, which ex-
hibits robustness to outliers in the residual covariance matrix (Siemsen
& Bollen, 2007).

2. To deal with high-dimensional indicators, we create a novel Bayesian
LASSO estimation procedure (Park & Casella, 2008), and we apply it to
an existing dataset to obtain a sparse linear combination of audio record-
ing features related to Parkinson’s disease status at the latent variable
level.

3. To analyze mediation models in which there are more potential mediators
than rows, we develop a variant of sparse high-dimensional mediation
analysis based on unweighted least squares (ULS). Using this method, we
perform exploratory mediator selection in an epigenetic dataset (Schaid
& Sinnwell, 2020; van Kesteren & Oberski, 2019; Zhang et al., 2016).

These extensions are intended to demonstrate the power and flexibility of
the proposed approach. The main purpose of this paper is to make this
approach available to the SEM community to facilitate rapid development
of novel extensions to SEM that will be useful in modern-day applications.
To this end, we also provide an open source software package, tensorsem
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(doi:10.5281/zenodo.3957287).

This paper is structured as follows. First, SEM will be framed as an opti-
mization problem, and a brief overview will be given of the current methods of
SEM parameter estimation. Then, we will introduce the concept of computa-
tion graphs, as used in the field of deep learning. Subsequently, we will develop
the computation graph for SEM, after which we show how this can be used
to extend SEM to novel situations. Lastly, we discuss the implications of this
novel framework for SEM and we provide directions for future research. The
methods introduced this paper are reproducible using the open-source software
we have developed (github.com/vankesteren/tensorsem), combining the pop-
ular R package lavaan (R Core Team, 2018; Rosseel, 2012) and the PyTorch
neural network software (Paszke et al., 2019). All the examples associated with
this paper are reproducible using the code in the supplementary material.

2.2 Background

2.2.1 SEM as an optimization problem

SEM in its basic form (Bollen, 1989) is a framework to model the covariance
matrix of a set of observed variables. Through separation of structural and
measurement models, it enables a wide range of multivariate models with both
observed and latent variables. SEM generalizes many common data analysis
methods, such as linear regression, seemingly unrelated regression, errors-in-
variables models, confirmatory and exploratory factor analysis (CFA / EFA),
multiple indicators multiple causes (MIMIC) models, instrumental variable
models, random effects models, and more.

Below, we reiterate how the parameter configuration of the SEM framework
creates a model-implied covariance matrix. Then, we show how this matrix is
the basis for objective functions representing the distance between the model-
implied and the observed covariance matrix. Next, we show how such objective
functions are used to estimate the parameters of interest in the maximum
likelihood (ML) and generalized least squares (GLS) frameworks.

The most commonly used formulations of SEM are the LISREL notation
(Jöreskog & Sörbom, 1993) used in software packages such as lavaan (Rosseel,
2012) and the Reticular Action Model (RAM) notation (McArdle & McDonald,
1984) used in software such as OpenMX (Neale et al., 2016). In this paper,
we adopt a variant of the LISREL notation used in lavaan and Neudecker and
Satorra (1991), also known as the “all-y” version:

z = Λη + ε (Measurement model)
η = B0η + ξ (Structural model)

(2.1)

where z represents a vector of centered observable variables of length P , and
η, ε, and ξ are random vectors such that ε is uncorrelated with ξ (Neudecker &
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Satorra, 1991). The parameters of the model are encapsulated in four matrices:
Λ contains the factor loadings, Ψ contains the covariance matrix of ξ, B0

contains the regression parameters of the structural model, and Θ contains the
covariance matrix of ε. From these matrices, we construct the full parameter
vector δ as follows:

δ =
[
(vecΛ)T , (vechΘ)T , (vechΨ)T , (vecB0)

T
]T (2.2)

where the vec operator transforms a matrix into a vector by stacking the
columns, and the vech operator does the same but eliminates the supradiag-
onal elements of the matrix. Specific models impose specific restrictions on
this parameter vector. This leads to a subset of free parameters θ. δ is identi-
fied through predefined restrictions: δ = δ(θ). The model-implied covariance
matrix Σ(θ) is a function of the free parameters, defined as follows (Bock &
Bargmann, 1966; Jöreskog, 1966):

Σ(θ) = ΛB´1ΨB´TΛT +Θ (2.3)

where B = I ´B0 is assumed to be non-singular – that is, the structural path
model B0 is assumed to be identified.

In order to estimate θ, a fitting function needs to be defined. All common
SEM objectives are measures of the distance between the model-implied covari-
ance matrix Σ(θ) and the observed covariance matrix S: the model fits better
if the model-implied covariance matrix more closely resembles the observed
covariance matrix. The maximum-likelihood (ML) objective function FML is
such a distance measure. Under the assumption that the observed covariance
matrix follows a Wishart distribution or, equivalently, the observations follow
a multivariate normal distribution, the maximum-likelihood fitting function is
the following (Bollen, 1989; Jöreskog, 1967):

FML(θ) = log |Σ(θ)| + tr
[
SΣ´1(θ)

]
(2.4)

Note that the ML fit function is a special case of the generalized least
squares (GLS) fitting function (Browne, 1974) which is defined as the following
quadratic form:

FGLS(θ) = (s ´ σ(θ))TW (s ´ σ(θ)) (2.5)

Where s = vechS, and σ(θ) = vechΣ(θ). Here, FGLS = FML when W =
2´1DT (Σ´1(θ) b Σ´1(θ))D (Neudecker & Satorra, 1991), where D is the
duplication matrix and b indicates the Kronecker product. Other choices
for W lead to other estimators, such as unweighted least squares (ULS) or
diagonally weighted least squares (DWLS).

With this formulation, the gradient g(θ) of FGLS with respect to the param-
eters θ and the Hessian H(θ) – the matrix of second-order derivatives – were
derived by Neudecker and Satorra (1991). These two quantities are the basis
for standard errors, robust statistical tests for model fit (Satorra & Bentler,
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1988), as well as fast and reliable Newton-type estimation algorithms (Lee &
Jennrich, 1979). One such algorithm is the Newton-Raphson algorithm, where
the parameter estimates at iteration i+1 are defined as the following function
of the estimates at iteration i:

θ(i+1) = θ(i)
´ H´1(θ(i)) ¨ g(θ(i)) (2.6)

Together, the objective function and the algorithm comprise an estimator –
a way to compute parameter estimates using the data. Note that it is developed
specifically for GLS estimation of SEM. With every extension to GLS, this work
needs to be redone: a bespoke new estimator – objective, gradient, Hessian,
and algorithm – needs to be derived and implemented.

2.2.2 Optimization problems as computation graphs

In this paper, we suggest implementing the SEM optimization problem as a
computation graph, to leverage the advances of the deep learning field for
extending the SEM framework. A computation graph is a graphical represen-
tation of the operations required to compute a loss or objective value F (θ) from
(a vector of) parameters θ (Abadi et al., 2016). The full computation is split
into a series of differentiable smaller computational steps. Each of these steps
is represented as a node, with directed edges representing the flow of computa-
tion towards the final result. Because the nodes are differentiable, computing
gradients of the final (or any intermediate) result with respect to any of its
inputs is automatic. Gradients are obtained by applying the chain rule of cal-
culus starting at the node of interest and moving against the direction of the
arrows in the graph. Thus, computation graphs are not only a convenient way
of representing an objective function in a computer, but they also immediately
provide the derivatives (and second derivatives), which are necessary to opti-
mize functions or estimate standard errors. For example, consider the familiar
ordinary least squares objective for linear regression:

FLS(β) =
ÿ

i

(yi ´ xiβ)
2 = (y ´ Xβ)T (y ´ Xβ) (2.7)

The computation graph of this objective function can be constructed as in
Figure 2.1. This figure represents the objective by ”unwrapping” the equa-
tion from the inside outward into separate matrix operations: first, there is a
matrix-vector multiplication of the design matrix X with the parameter vec-
tor β. Then, the resulting n ˆ 1 vector ŷ is subtracted elementwise from the
observed outcome y, and the result is squared, then summed to output a single
squared error loss value FLS. The nodes in a computation graph may repre-
sent scalars, vectors, matrices, or even three- and higher-dimensional arrays.
Generally, these nodes are referred to as tensors.
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sum
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Figure 2.1 Least squares regression computation graph, mapping the re-
gression coefficients (β) to the least squares objective function FLS. The
greyed-out parts contain elements which do not change as the parameters are
updated, in this case observed data.

Each of the operations in the graph has a registered derivative function. If
it is known that the ”square” operation f(x) = x2 is applied as in Figure 2.1,
the derivative f 1(x) is 2x and the second-order derivative f2(x) is 2. Thus, the
gradient of the squared error tensor with respect to the residual tensor r is 2r.

Although automatic differentiation is an old idea (Wengert, 1964), its com-
bination with state-of the art optimizers (see Appendix A.1) in software such
as Torch (Collobert, Bengio, & Mariéthoz, 2002; Paszke et al., 2017) and
TensorFlow (Abadi et al., 2016) have paved the way for the current pace of
deep learning research. Before the development and implementation of the
computation graph, each neural network configuration (model) required spe-
cialized work on the part of the researchers who introduced it to provide a novel
estimator. Thanks to computation graphs, researchers can design generic neu-
ral nets without needing to invent a bespoke estimator. This development has
greatly accelerated progress in this area. For SEM, we see a similar situation
at the moment: each development or extension of the model currently requires
a new algorithm that is capable of estimating its parameters. By applying
computation graphs to SEM, we hope to greatly accelerate the process of de-
veloping novel SEM models. In the next section we combine the parameter
configuration developed for SEM with the computation graphs and optimizers
developed for deep learning to create a more flexible form of SEM.

2.3 Flexible extensions to SEM using computation graphs
In this section, we develop the computation graph and parameter configura-
tion to perform default ML-based structural equation modeling using PyTorch
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(Paszke et al., 2019). Then, we outline how this computation graph can be
edited to extend SEM to novel situations, and how additional penalties can be
imposed on any parameter in the model. In the next section, we show examples
of such edits.

2.3.1 The SEM computation graph

The SEM computation graph for the LISREL all-y notation is displayed in
Figure 2.2. From left to right, a parameter vector δ is first instantiated with
constrained elements, such that the free parameters represent θ. Then, this
vector is split into the separate vectors as in Equation 2.2. These vectors are
then reshaped into the four SEM all-y matrices, using duplication indices for
the symmetric matrices Ψ and Θ.

In the next part, these matrices are transformed to the model-implied co-
variance matrix Σ(θ) by unwrapping Equation 2.4 from the inside outward:
B´1 is constructed as (I ´ B0)

´1, then Ψ is premultiplied by this tensor and
postmultiplied by its transpose. Then, the resulting tensor itself is pre - and
postmultiplied by Λ and ΛT , respectively. Lastly, Θ is added to construct the
implied covariance tensor.

The last part is the graphical representation of the ML fit function from
Equation 2.4. Σ(θ) is inverted, then premultiplied by S, and the trace of this
tensor is added to the log determinant of the inverse of Σ(θ). The resulting
tensor, a scalar value, is the FML(θ) objective function for SEM.

δ

Β0

Λ

Ψ

Σ

Θ

I 
S

FML

subtract

invert multiply

trace

logdet

add

add

multiply

invert

transpose multiply

transpose

multiply
multiply

Figure 2.2 Full computation graph for all-y structural equation model, map-
ping the parameters (δ) to the maximum likelihood fit function FML. The
greyed-out parts contain elements which do not change during model fitting,
meaning either observed data or constrained parameters. (NB: The con-
strained elements in this graph are not representative of a specific model).

Each operation in Figure 2.2 carries with it information about its gradi-
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ent. PyTorch can therefore automatically compute gradients of to the model
parameters with respect to the fit function in the SEM computation graph.
The Hessian can also be obtained automatically by applying the same prin-
ciple to the gradients. Note that these correspond to the observed score and
information matrix, rather than their expected versions derived under the null
hypothesis of model correctness. PyTorch also provides state-of-the-art optimiz-
ers such as Adam Kingma and Ba (2014) to optimize computation graphs using
these quantities (see Appendix A.1 for more background on these optimizers).
The supplementary material contains a python package which implements this
computation graph, along with example code to estimate lavaan models using
this package.

2.3.2 Editing the objective function

The computation graph approach allows completely different objective func-
tions to be implemented with relative ease. One such objective was coined by
Siemsen and Bollen (2007), who introduce least absolute deviation (LAD) esti-
mation. Their motivation is the performance of the LAD estimator as a robust
estimation method in other fields. Note that while Siemsen and Bollen find
limited relevance for this SEM estimator in terms of performance, we consider
it to be an excellent showcase of the flexibility of our approach. This objec-
tive does not fit in the GLS approach of Browne (1974). The LAD estimator
implies the following objective:

FLAD(θ) =
ÿ

i,j

|Σ(θ)i,j ´ Si,j | (2.8)

A computational advantage of this objective relative to the ML fit func-
tion is that there is no need to invert Σ(θ). The work of Siemsen and Bollen
(2007) focuses on developing a greedy genetic evolution numerical estimation
algorithm which performs a search over the parameter space. Using this op-
timization algorithm, they show that the LAD estimator may outperform the
ML estimator in very specific situations.

Constructing the LAD estimator in the computation graph framework
means replacing the ML fit operations with the LAD operations. This is shown
in Figure 2.3. Note that compared to the ML objective, there are fewer opera-
tions, and the inversion operation of the implied covariance matrix is removed.
This change is trivial to make given the SEM computation graph, and we will
show later in the Examples section that such alternative objective functions
can be estimated using PyTorch.
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Figure 2.3 Full SEM computation graph for the least absolute deviation
(LAD) objective. Compared to the ML fit function, the last part of the
graph contains different operations.

2.3.3 Adding parameter penalization

A more useful modification of default SEM is the addition of penalties to
the parameters of structural equation models (Holmes Finch & Miller, 2020;
P.-H. Huang, Chen, & Weng, 2017; Jacobucci et al., 2016). Such penalties reg-
ularize the model, which may prevent overfitting and improve generalizability
(Hastie, Tibshirani, & Wainwright, 2015). There is a wide variety of parameter
penalization procedures, but the most common methods are ridge and LASSO.
In regression, the widely used elastic net (Zou & Hastie, 2005) is a combination
of the LASSO and ridge penalties. The objective function for elastic net is the
following:

FEN(β) = FLS(β) + λ1 ∥β∥1 + λ2 ∥β∥21 (2.9)

where ∥β∥1 =
ř

p |βp|, and λ1 and λ2 are hyperparameters which determine
the amount of LASSO and ridge shrinkage, respectively. By setting λ1 to zero
we obtain L2 (ridge) shrinkage, and setting λ2 to zero yields the L1 (LASSO).
Nonzero values for both parameters combines the two approaches, which has
been shown to encourage a grouping effect in regression, where strongly cor-
related predictors tend to be in or out of the model together (Zou & Hastie,
2005).

Friedman et al. (2010) have developed an efficient algorithm for estimating
the elastic net for generalized linear models and have implemented this in their
package glmnet. For SEM, (Jacobucci et al., 2016) have created a package for
performing penalization by adding the elastic net penalty to the ML fit func-
tion. Their implementation uses the RAM notation (McArdle & McDonald,
1984), and their suggestion is to penalize either the A matrix (factor loadings
and regression coefficients), or the S matrix (residual covariances).
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In the field of deep learning, parameter penalization is one of the key mech-
anisms by which massively overparameterized neural networks are estimated
(Goodfellow et al., 2016). Regularization is therefore a core component of
various software libraries for deep learning, including PyTorch. The optimiz-
ers implemented in these libraries, such as Adam (Kingma & Ba, 2014), are
tried and tested methods for estimation of neural networks with penalized pa-
rameters, which is an active field of research (e.g., Scardapane, Comminiello,
Hussain, & Uncini, 2017).

In the SEM computation graph, the LASSO penalty on the regression pa-
rameters can be readily implemented by adding a few nodes to the ML fit
graph. This is displayed in Figure 2.4. The absolute value of the elements of
the B0 tensor are summed, and the resulting scalar is multiplied by the tuning
parameter. The resulting value is then added to the maximum likelihood fit
tensor to construct the lasso objective FLASSO(θ).
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Figure 2.4 B0 LASSO computation graph with a pre-defined λ tuning pa-
rameter.

Ridge penalties for the B0 matrix can be implemented in similar fashion,
but instead of an “absolute value” operation, the first added node is a “square”
operation. These penalties can be added to any tensor in the computation
graph, meaning penalization of the factor loadings or the residual covariances,
or even a penalty on B is quickly implemented. The elastic net penalty specif-
ically can be implemented by imposing both a ridge and a lasso penalty on the
tensor of interest.

Note that each additional penalty comes with its own parameter to be se-
lected – a process called “hyperparameter tuning”. Tuning of penalty param-
eters is traditionally done through cross-validation; glmnet (Friedman et al.,
2010) provides a function for automatically selecting the penalization strength
in regression models through this method. Another method is through inspect-
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ing model fit criteria. For example, Jacobucci et al. (2016) suggest selecting
the penalty parameter through the BIC or the RMSEA, where the degrees of
freedom is determined by the amount of nonzero parameters, which changes as
a function of the penalization strength. Another example is penalized network
estimation, where Epskamp, Borsboom, and Fried (2018) suggest hyperparam-
eter tuning through an extended version of the BIC. There is another option,
used in both deep learning as well as Bayesian statistics: a prior can be set on
the hyperparameters. In this way, the parameter itself is learned along with the
model: the “full Bayes” approach (van Erp et al., 2019). In the deep learning
literature, this is called Bayesian optimization or gradient-based optimization
of hyperparameters (Bengio, 2000). In the Examples section, we show how the
Bayesian LASSO approach (Park & Casella, 2008) can be leveraged for sparse
factor analysis in SEM, a completely novel extension.

2.3.4 Standard errors and model tests

In SEM, standard errors can be calculated through the Fisher information
method, requiring only the Hessian of the log-likelihood at the maximum and
the assumption that the distribution this log-likelihood is based on (usually
Normal-theory) is correct. Additionally, the distributional assumption can be
relaxed by using sandwich estimators, in SEM known as Satorra-Bentler (ro-
bust) standard errors. These need both the Hessian and the N ˆ P outer
product matrix ∆ – the case-wise first derivatives of the parameters w.r.t. the
implied covariances σ(θ) (Savalei, 2014). Sandwich estimators also lead to
robust test statistics which are not sensitive to deviations from normality. In
econometrics, many variations of the sandwich estimator are available, depend-
ing on whether the expected or observed information matrix is used (Kolenikov
& Bollen, 2012).

Computation graphs as outlined in this section are a general approach for
obtaining parameter estimates of structural equation models. Moreover, for
the ML computation graph (Figure 2.2) it is also possible to obtain accurate
standard errors because the observed information matrix – the inverse of the
Hessian of the log-likelihood – is available automatically through the gradient
computation in PyTorch. In addition, through the same computation graph
but with case-wise entering of the data, the outer product matrix ∆ can also
be made available. Because these are the observed versions, computation of
empirical sandwich (Huber-White) standard errors is possible. Naturally, an
established alternative to these procedures is to bootstrap in order to obtain
standard errors. Furthermore, the log-likelihood itself is directly available,
thus information criteria such as AIC, BIC and SSABIC (Sclove, 1987), as well
as normal-theory and robust test statistics (Satorra & Bentler, 1988) can be
computed more or less “as usual”.

In principle, therefore, standard errors and test statistics are available when
using the computation graph approach. However, in practice the computation
graph can be edited arbitrarily by introducing penalties or a different fit func-
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tion. In this case, no general guarantees can be given about the accuracy of
the standard errors, the coverage probability of the confidence interval, or the
asymptotic behaviour of model fit metrics derived from the obtained model.
This is inherent to the flexibility of the computation graph approach: for exist-
ing methods in SEM, simulations have shown the performance of the current
standard error solutions (including the bootstrap), but as extensions are in-
troduced these results do not necessarily hold. For some extensions, there will
be no adequate approximation to the standard error with accurate frequen-
tist properties. For example, there is a large body of literature on standard
error approximations for L1 penalization (e.g., Fan & Li, 2001), but the prob-
lem of obtaining penalized model standard errors is fundamentally unsolvable
due to the bias introduced by altering the objective function away from the
log-likelihood (Goeman, Meijer, & Chaturvedi, 2018, p. 18). Not even the
bootstrap can provide consistent standard error estimates in these situations
(Kyung, Gill, Ghosh, & Casella, 2010). Hence, software implementations of
penalized regression (e.g., glmnet) consciously omit standard errors.

In situations beyond ML, our advice is to pay attention to the behaviour of
existing fit criteria and standard errors. Using simulations for each new model
and data case, the frequentist properties of the empirical confidence interval
can be assessed and the type-I and type-2 errors of the (Satorra-Bentler) χ2 test
can be found. Those values can then be used to adjust the interpretation of the
results in the analysis of the real data. If existing standard error approaches
fail altogether, a viable solution may be to completely omit standard errors –
just as in the L1 regression approach.

Note that all of the above holds similarly for Bayesian estimation, where
the choice of prior influences the frequentist properties of the posterior, such as
the credible interval coverage probability. Just as it is possible with the com-
putation graph approach to create a nonconverging model with bad asymptotic
behaviour, it is possible with Bayesian methods to create such a problematic
model through the choice of nonsensical priors. Solutions in this case are also
based on simulation, e.g., prior predictive checking (Gabry, Simpson, Vehtari,
Betancourt, & Gelman, 2019) or leave-one-out cross-validation (Vehtari, Gel-
man, & Gabry, 2017).

In the next section, we show through a set of examples motivated by existing
literature how our implementation of the SEM computation graph can be used
to create extensions such as the ones we have introduced in this section.

2.4 Examples
In this section, we implement three completely novel estimation procedures
for SEM using our computation graph approach. The first example demon-
strates how non-standard extensions to the fit function can be implemented
with relative ease: we show how the Least Absolute Deviation (LAD) estima-
tor yields similar parameters to the ML estimator in a factor analysis, even
when the covariance matrix is contaminated with wrong values. Then, we
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perform a structural equation model with a sparse factor, using full Bayesian
LASSO regularization (Park & Casella, 2008) for the factor loadings. To our
knowledge, the full Bayesian optimization approach with hyperpriors has not
previously been performed in the context of factor analysis with a covariate.
Then, we perform high-dimensional mediation analysis with ULS optimization
and LASSO regularization, using sparsity to select relevant variables among a
set of 110 potential mediators. This procedure is also novel, and through our
approach it can be implemented relatively simply.

All the computation graphs and estimation methods described in this paper
are reproducible through the code in the supplementary material, as well as
the python package available at github.com/vankesteren/tensorsem. Prior to
implementing these examples, we have checked the validity of our PyTorch im-
plementation for default and regularized SEM against several other packages.
The results of this are shown in Appendix A.2.

2.4.1 LAD estimation

Although LAD estimation was shown to be beneficial only in very specific situ-
ations (Siemsen & Bollen, 2007), it is an excellent showcase for the flexibility of
the computation graph approach. Because the software developed by Siemsen
and Bollen (2007) is not available, we instead compare the LAD estimates to
the ML estimates. The PyTorch LAD estimator is a completely novel way of
estimating SEM.

For this example, we generate data of sample size 1000 from a one-factor
model. For this data, we constrain the observed covariance matrix to the
covariance matrix implied by the population model in Figure 2.5. Since LAD
estimation should be robust to outliers in the observed covariance matrix,
which can happen in the trivial case of mistranscribing a covariance matrix
into software, we also performed this on data with a “contaminated” covariance
matrix: COV (X1, X3) = 2, COV (X2, X4) = 0.35.
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x1 x8x7x6x5x4x3x2 x9

F

1 1.17 1.18 1.36 1.40 1.42 1.34 1.23 0.89

Figure 2.5 Factor analysis model used to generate data for comparing the
least absolute deviation (LAD) estimator to the maximum likelihood (ML)
estimator in tensorsem. Residual variances of the indicators were all set to 1.

The results are shown in Table 2.1. The for ML estimation in lavaan and
tensorsem again agree. With the uncontaminated covariance matrix, the LAD
estimates reach the same conclusion as the ML estimates. Note that although
unbiased, LAD is relatively less efficient, but this effect is not visible with
a sample size of 1000 for this model. With contamination in the covariance
matrix, the LAD method shows no bias, whereas the ML method does. Because
the Hessian for the LAD objective is not invertible, the standard errors are not
available using the previously described ACOV(θ) method. Siemsen and Bollen
(2007) solve this problem by bootstrapping, which is possible but outside the
scope of the current paper.

Table 2.1 Parameter estimates comparing ML estimates to LAD estimates
using both uncontaminated (u, top) and contaminated (c, bottom) covariance
matrices. LAD is robust to the contamination of the covariance matrix.

X1 X2 X3 X4 X5 X6 X7 X8 X9
Uncontaminated (ML) 1.00 1.17 1.18 1.36 1.40 1.42 1.34 1.23 0.89
Contaminated (ML) 1.00 0.93 1.15 1.10 1.22 1.24 1.17 1.07 0.78
Uncontaminated (LAD) 1.00 1.17 1.18 1.36 1.40 1.42 1.34 1.23 0.89
Contaminated (LAD) 1.00 1.17 1.18 1.36 1.40 1.42 1.34 1.23 0.89

The results from this example show that the objective function in PyTorch
can be edited and that Adam still converges to a stable solution with this ad-
justed objective. The parameter estimates from LAD estimation approximate
those obtained from ML estimation in a one-factor model with 9 indicators
and 1000 observations. In addition, we have observed that LAD estimation
is robust to contamination of the covariance matrix in the contrived example
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of this section. Note that SEM estimation can be made robust against out-
liers in the raw data through using a multivariate t likelihood (Asparouhov &
Muthén, 2016; Lai & Zhang, 2017; Yuan & Bentler, 1998), which is possible in
the computation graph approach but outside the scope of the current paper.

2.4.2 Sparse factor SEM

Obtaining sparsity in factor analysis is a large and old field of research, with
methods including rotations of factor solutions in principal component analy-
sis (Kaiser, 1958) and modification indices in CFA (Saris, Satorra, & Sörbom,
1987; Sörbom, 1989). Sparsity is desirable in factor analysis due to the en-
hanced interpretability of the obtained factors. Recently, penalization has been
applied to different factor analysis situations in order to obtain sparse factor
loadings and simple solutions (Choi, Oehlert, & Zou, 2010; Jin, Moustaki, &
Yang-Wallentin, 2018; Lu, Chow, & Loken, 2016; Pan, Ip, & Dubé, 2017; Scharf
& Nestler, 2019). In addition, traditional factor rotations have been combined
with SEM in a unified framework called exploratory SEM (ESEM, Asparouhov
& Muthén, 2009). Several implementations of factor loading regularization now
exist in SEM (e.g. Guo, Zhu, Chow, & Ibrahim, 2012; P.-H. Huang et al., 2017;
Jacobucci et al., 2016).

Following these recent developments, in this example we impose sparse
structure in a factor by imposing a penalty on the relevant elements of the Λ
matrix. We reuse the example of Choi et al. (2010), who created a new lasso
estimator for factor analysis and tested their method on an open Parkinson
dataset. The example dataset is taken from the UCI Machine Learning repos-
itory (Blake & Merz, 1998) and is based on N audio recordings of people with
and without Parkinson’s disease. Certain biologically inspired features (Little,
McSharry, Roberts, Costello, & Moroz, 2007) of these audio recordings can
be related to the disease status of the participants. In this example, we seek
to find a sparse linear combination of these features which can be explained
by the disease status. Note that this feature-based representation is similar
in idea to Guo et al. (2012), who used Bayesian LASSO to select among ba-
sis functions, creating non-linear spline relations between latent variables and
their indicators.
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X1 X2 X22

F

...

Parkinson
status

Figure 2.6 Model applied to the Parkinson’s data. Parkinson status is
a binary variable, X1 - X22 are biologically-inspired features of the audio
recording, normalized and standardized to follow a conditional normal distri-
bution.

The model applied to the data is shown in Figure 2.6. After standardization
and log-transforming the skewed features (see supplementary material for the
full pre-processing pipeline), ML estimates for this model were obtained using
standard SEM software (OpenMx; Neale et al., 2016, NB: lavaan’s optimization
reached a local minimum), as well as via our PyTorch implementation. Then,
a Bayesian LASSO penalty was added to the model: the objective function
was equal to the ML fit function (Equation 2.4) plus a Laplace prior on the
factor loadings with a Gamma(1.78, 1) hyperprior on the scale of the double
exponential distribution (Park & Casella, 2008). The resulting factor loadings
and factor scores are shown in Figure 2.7.
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Figure 2.7 Factor loadings (left panel) and factor scores (right panel) in the
Parkinson’s disease dataset. All but 6 features are set to 0 when estimating
the model using a Bayesian LASSO. Error bars are omitted for this method
as the quadratic approximation is known to produce inconsistent confidence
intervals in this case. The right panel shows that the LASSO factor scores
exhibit very similar properties when compared to the ML factor scores despite
the sparsity.

The figure shows that the factor scores exhibit very similar class separa-
tion, despite the sparsity of the LASSO solution. In other words, using fewer
features, a similar amount of information about the disease status is encoded
in this factor. In this example, variable selection is informed by the disease sta-
tus variable. The penalty parameter is learned automatically, along with the
remaining variables. Furthermore, in this framework it is easy to extend the
penalty to adaptive LASSO, where the strength of penalization is determined
on a per-feature basis (Guo et al., 2012), or any of the myriad of alternative
penalty functions, some of which are known to exhibit less bias in the nonzero
parameters than the LASSO (van Erp et al., 2019).

2.4.3 Sparse high-dimensional mediation

In this last example, we implement high-dimensional mediation analysis. This
procedure is becoming more relevant as high-dimensional data becomes acces-
sible due to reductions of cost and increasing availability of complex measure-
ment devices. The motivating example for this high-dimensional mediation
procedure can be found in Houtepen et al. (2016) and van Kesteren and Ober-
ski (2019): childhood trauma scores of participants were measured using a
standard questionnaire, and their reactivity to stress later in life was measured
using their cortisol patterns after a stressor. Gene methylation was measured
for each participant and hypothesized to mediate the relation between child-
hood trauma and stress reactivity. The goal of this study was to identify
locations in the genome where methylation has an influence on the relation be-
tween childhood trauma and stress reactivity, as a potential target for future
research.
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Crucially, ML estimation is not available with high-dimensional data, where
the parameters outnumber the rows in the dataset, because the model-implied
covariance matrix is not invertible. However, other analysis methods such as
LAD estimation (Section 2.4.1) and ULS estimation do not need to invert
the model-implied covariance matrix to obtain parameter estimates. In this
section we use ULS estimation with a LASSO penalty on the paths. In this
way, we perform variable selection among the mediators, while taking into
account potential residual correlations between the mediators.

To test our approach, we have simulated a dataset following the same pat-
tern as the motivating example. It contains 110 potential mediators, of which
only 10 are true mediators with an indirect effect of .25. There are only 40 rows,
making the dataset high-dimensional (for more details on data generation, see
van Kesteren & Oberski, 2019). Using this data, two mediation models were
fit in PyTorch, one with only the ULS loss function, and one with the ULS loss
function plus the sum of the absolute values of the indirect paths:

L(θ) = (s ´ σ(θ))T (s ´ σ(θ)) +
ÿ

pPP

|ap| +
ÿ

pPP

|bp|

where s and σ(θ)) are the half-vectorized observed and implied covariance
matrix elements, P is the total number of mediators, ap is the regression path
from the predictor to the pth mediator, and bp is the regression path from the
pth mediator to the outcome. Note that for simplicity, we have not included
a multiplicative penalty hyperparameter, but this could be included in future
implementations.

The true indirect effects (apbp) and their estimates are shown in Figure 2.8.
The penalization procedure correctly sets most mediation paths to 0, thus ex-
cluding their respective mediators from consideration. If we use this exclusion
as a decision rule for variable selection, we obtain one false negative (M.10)
and three false positives (M.32, M.52, and M.81), resulting in a respectable
positive predictive value (PPV) of 75%.
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Figure 2.8 True and estimated indirect effects in a high-dimensional media-
tion analysis. The estimation methods are Unweighted Least Squares (ULS)
and penalized ULS (LASSO). Regularized estimation correctly sets most pa-
rameters to 0 and shrinks the effect sizes overall.

Applying the same approaches, ULS and penalized ULS estimation, to 1000
preselected mediators from the real dataset (N=85) from the motivating ex-
ample yields the result shown in Figure 2.9. The top-5 most relevant locations
are labelled using their methylation site identifier. This type of penalization
approach can be valuable in discovering potential mediation targets for fu-
ture research, and although a similar procedures have been implemented using
LASSO on the bp paths (Y. T. Huang & Pan, 2015), LASSO on both ap and
bp paths (Serang, Jacobucci, Brimhall, & Grimm, 2017), or a group LASSO
penalty (Schaid & Sinnwell, 2020), it has never been implemented using ULS
estimation.
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Figure 2.9 ULS and penalized ULS estimated absolute indirect effects in the
Houtepen et al. (2016) dataset. Regularized estimation sets most parameters
to 0 and shrinks the effect sizes overall, but for some mediators the effect
sizes increase with penalization due to correlations among mediators. The
top-5 strongest effect sizes are labelled, representing locations in the genome
where mediation is strongest.

Together, the examples have shown that estimation and extension of SEM
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through computation graphs and the Adam optimizer is viable. In a single uni-
fied optimization framework, we have implemented several extensions, either
suggested in previous literature or completely novel. As previously mentioned,
the exact properties of the novel procedures introduced here should be further
analyzed in future work for different types of models. This is not the goal of
the present work, where these examples have served as an illustration of the
flexibility and viability of the computation graph approach in principle.

2.5 Conclusion
Estimation of SEM becomes more challenging as latent variable models become
larger and more complex. Traditionally, SEM optimizers have already suffered
from nonconvergence and inadmissible solutions (e.g., Chen, Bollen, Paxton,
Curran, & Kirby, 2001; Revilla & Saris, 2013), and with the increasing com-
plexity of available datasets these problems are set to become more relevant.
We argue that current estimation methods do not fulfil the needs of researchers
applying SEM to novel situations in the future.

In this paper, we have introduced a new way of constructing objective func-
tions for SEM by using computation graphs. When combined with a modern
optimizer such as Adam, available in the software package PyTorch, this ap-
proach opens up new directions for SEM estimation. The flexibility of the
computation graph lies in the ease with which the graph is edited, after which
gradients are computed automatically and optimization can be performed with-
out in-depth mathematical analysis. This holds even for non-convex objectives
and objectives which are not continuously differentiable, such as the LASSO
objective. We have shown that previously proposed improvements to SEM,
such as LAD estimation (Siemsen & Bollen, 2007), follow naturally from this
framework, and that our implementation is able to optimize these, yielding
parameter estimates that behave according to expectations. In addition, we
demonstrated the ease with which extensions can be investigated by imple-
menting a fully Bayesian LASSO and performing high-dimensional variable
selection with the ULS loss and a LASSO penalty, both novel penalization
methods for SEM.

As the computation graph approach paves the way for a more flexible SEM,
researchers can use it to develop theoretical SEM improvements. For example,
future research can focus on how penalties may be used to improve the per-
formance and interpretability of specific models (e.g., Jacobucci et al., 2018),
or how different objective functions may be used to bring SEM to novel situ-
ations such as high-dimensional data (Grotzinger et al., 2019; van Kesteren &
Oberski, 2019). A potential extension to SEM is the use of high-dimensional
covariates to debias inferences in observational studies (Athey, Imbens, & Wa-
ger, 2018). The computation graph may aid in importing such procedures to
SEM. An interesting historical note is that Cudeck, Klebe, and Henly (1993)
have had similar reasons for creating a general SEM optimization program,
where the full Hessian is numerically approximated for any covariance model
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and the solution is computed using Gauss-Newton iterations. The modern
computational tools used here now make such generic SEM programs feasible.

Another topic for future research is exploratory model specification. For
example, Brandmaier, von Oertzen, McArdle, and Lindenberger (2013) and
Brandmaier, Prindle, McArdle, and Lindenberger (2016) use decision trees to
find relevant covariates in SEM, and G. A. Marcoulides and Drezner (2001) use
genetic algorithms to perform model specification search. Penalties provide a
natural way to automatically set some parameters to 0, which is equivalent to
specifying constraints in the model. A compelling example of this is the work
by Pan et al. (2017), who used the Bayesian form of LASSO regularization as
an alternative to post-hoc model modification in CFA. Their approach penal-
izes the residual covariance matrix of the indicators, leading to a more sparse
selection of residual covariance parameters to be freed relative to the common
modification index approach.

There is an opportunity for the SEM computation graph approach to be
further developed to expand its range of applications. For example, through
applying Adam as a stochastic gradient descent (SGD) optimizer it may be
extended to perform full information maximum likelihood (FIML) estimation,
batch-wise estimation, or SEM estimation with millions of observations. This
will potentially enable SEM to be performed on completely novel types of data,
such as streaming data, images, or sounds. Another improvement which may
be imported from the deep learning literature is computation of approximate
Bayesian posterior credible intervals for any objective function using stochastic
gradient descent steps at the optimum (Mandt, Hoffman, & Blei, 2017). The
deep learning optimization literature moves fast, and through the connections
we have established in this paper the SEM literature could benefit from its
pace.
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Chapter 3

Exploratory Mediation Analysis with Many

Potential Mediators

van Kesteren, E. J., & Oberski, D. L. (2019). Exploratory mediation analysis
with many potential mediators. Structural Equation Modeling: A Multidisci-
plinary Journal, 26(5), 710-723. doi:10.1080/10705511.2019.1588124

Social and behavioral scientists are increasingly employing tech-
nologies such as fMRI, smartphones, and gene sequencing, which
yield ‘high-dimensional’ datasets with more columns than rows.
There is increasing interest, but little substantive theory, in the
role the variables in these data play in known processes.
This necessitates exploratory mediation analysis, for which struc-
tural equation modeling is the benchmark method. However, this
method cannot perform mediation analysis with more variables
than observations. One option is to run a series of univariate me-
diation models, which incorrectly assumes independence of the me-
diators. Another option is regularization, but the available imple-
mentations may lead to high false positive rates.
In this paper, we develop a hybrid approach which uses components
of both filter and regularization: the ‘Coordinate-wise Mediation
Filter’. It performs filtering conditional on the other selected medi-
ators. We show through simulation that it improves performance
over existing methods. Finally, we provide an empirical example,
showing how our method may be used for epigenetic research.

3.1 Introduction
Social and behavioral scientists are increasingly employing technologies such
as fMRI, smartphones, and gene sequencing, which yield ‘high-dimensional’
datasets with more variables than observations. These high-dimensional data
are often intended to answer questions such as “which areas of our brain are
relevant for pain perception?” (Atlas, Lindquist, Bolger, & Wager, 2014) and

Author contributions: EJK & DLO developed the idea. EJK created the software, implemented
the experiments, and wrote the manuscript. DLO provided extensive feedback on all components.
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“which genes mediate the effect of trauma on stress reactivity?” (Houtepen
et al., 2016). These are questions regarding exploratory mediation analysis
(EMA).

β1α1

...

α2 β2

αp βp

X Y

M1

M2

Mp

Figure 3.1 Exploratory mediation analysis with a set of p potential media-
tors M . For clarity, we omitted the P (P +1)/2 parameters belonging to the
residuals of M and their covariances, as well as the residual variance of Y .

Structural equation modeling (SEM) is the preferred method for media-
tion analysis with multiple mediators (Preacher & Hayes, 2008; Vanderweele
& Vansteelandt, 2014). With this method, it is possible to determine to what
extent specific M variables mediate the X Ñ Y effect conditional on the pres-
ence of other mediators in the model. However, this method fails when the
data is high-dimensional, when the variables under investigation outnumber
the samples N . In this situation, the observed covariance matrix is rank-
deficient, leading to linear dependence in the observed moments and, for the
full mediation model, nonconvergence.

Several alternative methods for EMA have been proposed to deal with this
issue. One option mentioned by Preacher and Hayes (2008) is to select relevant
mediators from a series of univariate X Ñ M Ñ Y mediation models (e.g.,
Boca, Sinha, Cross, Moore, & Sampson, 2014; Liu et al., 2013). We call this
the “filter” method, following the taxonomy of Guyon and Elisseeff (2003).
Its main advantages are that it is simple to explain and run, requiring only
P univariate path models. On the other hand, the filter method introduces
bias through model misspecification: it takes into account only the marginal
relationships of M with X and Y . A pitfall of this is that a variable useless
by itself can be useful together with others (Guyon & Elisseeff, 2003). In
other words, a certain mediator may be marginally irrelevant, but relevant
conditional on another set of mediators.

Recently, another multivariate method was introduced by Serang et al.
(2017). Their proposal was to perform EMA through regularized estimation
of the full structural equation model: “XMed”. This method automatically
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shrinks small regression paths to 0, leading to a selection of potential mediators:
mediators are variables for which both the X Ñ M path and the M Ñ Y path
are nonzero after regularization. With this method, it is possible to detect
mediators which are only relevant conditionally, while regularization resolves
the identification issues of default SEM (Hastie et al., 2015). The disadvantage
is that this method finds paths with a large effect rather than the desired
subset of mediators: the regularization in XMed shrinks small β paths to 0,
irrespective of the value of their associated α paths – shrinkage is performed
on all paths equally. This leads to inflated false positive rates as reported by
Serang et al. (2017) and Jacobucci et al. (2018). In summary, regularization
methods do perform conditional estimation, but they select paths rather than
mediators.

In this paper, we propose a hybrid approach to EMA which we call the
“Coordinate-wise Mediation Filter” (CMF). This method combines advantages
from both the filter and regularization methods: (a) it converges in case of high-
dimensional data, (b) it takes into account mediator correlations, leading to
conditional selection of mediators, and (c) it selects based on mediation, not
paths. CMF performs univariate filtering conditional on the other selected me-
diators by using an algorithm from regularized regression: cyclical coordinate
descent on residuals (Breheny & Huang, 2011; Friedman et al., 2010).

The remainder of the article is structured as follows: first, we provide rel-
evant background on exploratory mediation analysis. Then, we outline the
Coordinate-wise Mediation Filter as a hybrid method for mediator subset se-
lection. Following this, we show through simulation where each of the discussed
methods performs as well as SEM. In addition, we assess the performance of
CMF relative to the other available methods in a high-dimensional simula-
tion. Lastly, the CMF procedure is illustrated by applying it to the epigenetic
process of trauma and stress reactivity.

3.1.1 Exploratory mediation analysis

The fundamental goal of mediation analysis is to determine the process by
which a variable X influences another variable Y (MacKinnon, Lockwood, &
Williams, 2004). Exploratory mediation analysis (EMA) in particular is used
to explore a dataset for potential mediating variables (MacKinnon, 2008). In
other words, EMA pertains to determining among multiple potential mediators
which subset is most relevant. Through EMA, researchers can build theory and
select variables of interest for further research into the process under investi-
gation.

An example application of EMA is the research by Ammerman et al. (2018),
who investigated how childhood maltreatment leads to suicidal behaviour.
They defined 46 potential mediators, including psychological counseling, close-
ness to parents, and self-esteem. The authors did not test a fully specified medi-
ation model about the precise relations of each of these variables to childhood
maltreatment and suicidal behaviour. Instead, this study was exploratory,
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identifying which variables were the most relevant targets for future research.
Indeed, the authors conclude that the study “highlights factors that may be
potential targets for risk assessment and for treatment among adolescents with
a history of childhood maltreatment”.

3.1.1.1 Univariate mediation analysis and the filter method

A common framework for univariate mediation analysis is a system of regres-
sion equations (Equation (3.1); MacKinnon et al., 2004). The system is dis-
played graphically in Figure 3.2. In the present paper, we consider only the
case where the data from X, M , and Y are continuous and their relations
are linear. For nonlinear discrete extensions to mediation analysis, see Hayes
and Preacher (2010) and Hayes and Preacher (2014), respectively. For further
details, refer to the reviews by MacKinnon, Fairchild, and Fritz (2007) and
Preacher (2015).

M = µM + αX + eM

Y = µY + τX + βM + eY (3.1)

M

X Y

βα

τ

Figure 3.2 Graphical representation of the system of Equation (3.1). For
clarity, the residuals are not shown.

Under the standard assumptions of linear SEM, the parameter estimates of
this system may be used to determine whether M is a mediator — a dichoto-
mous decision. There are several ways to make this decision, usually based on
a quantity of interest q and a measure of uncertainty (MacKinnon, Lockwood,
Hoffman, West, & Sheets, 2002). For example, q may represent the size of
the indirect effect through the product of its coefficients qprod = αβ, and un-
certainty measures for qprod can be obtained using asymptotic standard error
methods (e.g., Olkin & Finn, 1995; Sobel, 1986) or bootstrapping (Preacher &
Hayes, 2008).

Combining the quantity of interest q with an uncertainty estimate and a
specified alpha level yields a dichotomous decision criterion based on a p-value.
We call this a univariate decision function D: a function that maps the data
of X, M , and Y to a binary decision of whether M should be considered a
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mediator (1) or not (0).

D : (x,m,y) ÞÑ t0, 1u

Note that any function that follows this specification can be considered a de-
cision function, regardless of complexity. An example of higher complexity
decision functions is given by VanderWeele (2015, p. 46), who states exposure-
outcome confounding should by default be controlled for when testing for me-
diation. The decision function encodes the researcher’s definition of mediation:
a product of coefficients decision function with a p-value cutoff of 0.1 will lead
to different results than an exposure-outcome controlled decision function with
a stricter cutoff.

This decision function framework thus provides a convenient abstraction,
highlighting a key advantage for mediation analysis methods: if the choice of
decision functions is flexible, a method is adaptable to the specific needs of a
researcher. If researchers want to follow the recommendation of VanderWeele
(2015), they can do so by adding an XM interaction term into the decision
function.

While these decision functions are univariate, EMA is an inherently mul-
tivariate procedure, requiring analysis of multiple indirect effects. To perform
EMA, a researcher can apply their chosen decision function to each mediator
separately, through P different mediation models as in Figure 3.2. This “filter
method” will result in a subset of relevant mediators. However, the implicit
assumption is that the M variables are independent of one another. In other
words, the selected subset will not include mediators that are relevant only
conditionally on another mediator.

3.1.1.2 Multivariate mediation analysis and XMed

To make mediation decisions multivariately, Preacher and Hayes (2008) recom-
mend the SEM approach. In this approach, the quantities of interest q1, ..., qP
and their uncertainty are estimated directly from a multiple mediation model
as in Figure 3.1. A decision can then be made for each individual Mp based
on its multivariately estimated quantity qp. Unlike the filter method, this ap-
proach estimates qp conditional on the other P´1 quantities, so that marginally
irrelevant true mediators may still be detected.

However, the SEM approach is unavailable in the case of high-dimensional
data because SEM parameters are estimated from observed covariances. High
dimensional data (P ą N) leads to a P ˆ P observed covariance matrix of
at most rank N , meaning a linear dependence exists among elements. If de-
pendent elements are mapped to separate parameters in the SEM model, an
infinite number of solutions exist for the same log-likelihood, so there is no
maximum likelihood solution. This is the case in the full mediation model. As
an alternative intuitive explanation, it is possible to view the M Ñ Y part of
the mediation model as a high-dimensional multiple regression, where ordinary
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least squares (OLS) estimates are unavailable because the covariance matrix
cannot be inverted (Hastie et al., 2015).

XMed (Serang et al., 2017) is an adjustment to the SEM method that not
only allows for high-dimensional data, but it also automatically selects a subset
of mediators without an explicit decision function. The estimation method
for XMed is RegSEM Jacobucci et al. (2016), which applies regularization to
a chosen subset of model parameters in a structural equation model. This
shrinkage is determined by the hyperparameter λ along with the penalization
function P (¨) in the objective function of RegSEM:

Fregsem = FML + λP (¨)

where ¨ is a vector of parameters.
In XMed specifically, shrinkage is applied to the vectors of α (x Ñ M) and

β (M Ñ y) parameters. Subset selection of the mediators occurs through the
chosen regularization method; the penalty function P (¨) is the LASSO penalty,
the ℓ1 norm of the chosen parameter vector: P (¨) = } ¨ }1. Depending on the
value of λ, The LASSO penalty shrinks the smallest of the chosen parameters
to 0 during estimation. This immediately forms the decision rule: for potential
mediator Mp, if αp or βp equals 0, then the estimated indirect effect αβp is 0,
thus Mp is not considered to be a true mediator.

A well-known algorithm for computing the LASSO solution, which can also
be applied in SEM, is coordinate-wise conditioning or coordinate descent: the
conditional solution is well-known and easy to find, in SEM the maximum
likelihood estimates, and the penalized solution is found by cyclically updating
and soft-thresholding the conditional solution for each parameter in turn, until
convergence (Hastie et al., 2015).

A sequential combination of the ideas of filtering and regularization was
proposed by Zhang et al. (2016) in a three-step approach called HIMA. First,
in the screening step the authors marginally filter irrelevant potential medi-
ators based on the M Ñ Y relations. Second, the remaining M Ñ Y paths
are estimated with regularization. Lastly, the test step performs the joint
significance test as introduced by Baron and Kenny (1986) with Bonferroni
correction on the remaining mediators.

The main disadvantage of these methods is that there is a pertinent differ-
ence between (a) penalized estimation of the paths and (b) finding mediators.
For XMed, a relatively small αp path will be shrunk to 0 before stronger α
paths, regardless of the strength of its associated βp path. This holds for
HIMA too, since in the selection stage it considers only β paths. Thus, these
methods do not target mediators with strong indirect effects αβ, but interme-
diate variables with strong α or β paths. Even though these methods do work
conditionally, they make the implicit assumption that the mediators also have
the strongest X Ñ M and M Ñ Y paths, which need not be so.

Rephrasing this in terms of decision functions, the regularization methods
exclude variables which have a relatively weak covariance with X or Y .
However, this decision criterion only partially captures theoretically plausible

44



mediators: true mediators may exist for which the covariance with X or
Y is relatively weak, but the indirect effect αβ is relatively strong. The
regularization methods will thus underperform in the presence of “noise”
variables which are not mediators, but which strongly covary with either X or
Y . We illustrate this in the simulation section.

In conclusion, to perform EMA, (a) the SEM method is optimal but un-
available for high-dimensional data, (b) the filter method is simple and flexible
but does not select mediators conditionally, and (c) regularization methods do
proper conditioning but are estimating paths rather than selecting mediators.

3.2 Coordinate-wise Mediation Filter

We propose a hybrid method, the Coordinate-wise Mediation Filter (CMF),
which contains both theory-driven decision functions and conditional estima-
tion of the quantity of interest. Like the filter method, CMF applies a decision
function to each of the mediators, but it performs this task conditional on the
set of currently selected mediators. The procedure is similar to cyclical coor-
dinate descent, the algorithm underlying regularization procedures in various
software implementations – but differs in that mediation rather than separate
regression paths are explicitly identified as the target. A key component of this
algorithm is the use of residuals to remove dependency among the coordinates
(Hastie et al., 2015). CMF generalizes this idea to mediator selection with
arbitrary objective functions.

The CMF implementation consists of two components: an inner algorithm,
which handles feature selection using the decision function D through coordi-
nate descent, and an outer algorithm, which performs random starts, feature
subsampling, and subsequent aggregation. The combined procedure can be
characterized as a stochastic coordinate descent algorithm. The following two
sections give a detailed outline of the inner and outer algorithm.

3.2.1 Inner algorithm

First, we initialize a vector of length P which contains the current mediator
selection in the form of 0 and 1 values – the starting values. A step is then
as follows: for each potential mediator Mp, create a data matrix M˚, which
contains all the mediators currently selected, excluding the variable Mp under
consideration. Then, perform the decision function D on the parts of x and
y orthogonal to (conditional on) this matrix. This conditioning is performed
through calculating the residuals of x and y with respect to M˚:

rx = x ´ M˚(M
1
˚M˚)

´1M 1
˚x

ry = y ´ M˚(M
1
˚M˚)

´1M 1
˚y

The decision function is thus performed as D(rx,Mp, ry), leading to a
binary decision whether mediator p selected, conditional on M˚.
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The inner algorithm is run continuously, randomly ordering the choice of p
in each iteration. It stops either when the mediator selection does not change
from one step to the next, or when the prespecified maximum number of iter-
ations is reached. The resulting program, shown in Algorithm 1, is a binary,
randomized form of cyclical coordinate descent similar to those in Hastie et al.
(2015). The randomization improves stability for very high-dimensional data
(Nesterov, 2012). Richtárik and Takáč (2014) show that this method attains
relatively fast convergence even with a billion variables in a sparse regression
situation.

Algorithm 1 Inner CMF algorithm
1: scale(x); scale(M); scale(y)
2: P Ð ncol(M) Ź number of mediators
3: decvec Ð 01, 02, . . . , 0P Ź initialise 0/1 decision vector
4: repeat
5: for p in 1:P do
6: M˚ Ð M[, decvec & !p] Ź selected mediators excluding p
7: rx Ð x ´ M˚(M

1
˚M˚)

´1M 1
˚x Ź residual of x

8: ry Ð y ´ M˚(M
1
˚M˚)

´1M 1
˚y Ź residual of y

9: decvec[p] Ð D(rx,M[, p], ry) Ź decision function
10: end for
11: until decvec ^= decvecprev Ź convergence when decvec is stable

3.2.2 Outer algorithm

The value of the decision vector resulting from the inner algorithm depends to
some extent on the starting values, due to the discrete nature of its coordinates.
Therefore, the algorithm is embedded in an outer loop that performs multiple
random starts. After aggregating the results from the different starts, the
decision vector of length P is continuous: each element p in this vector signifies
the proportion of times the potential mediator Mp was selected by the inner
algorithm. These proportions, or empirical selection probabilities, naturally
lead to a mediator ranking. This ranking can then again be dichotomized
using a cutoff score.

The second essential part in the outer algorithm is feature sampling. With
feature sampling, the inner algorithm will loop over only

P
?
P

T

potential medi-
ators at each iteration. This procedure is similar to how random forest decor-
relates its trees (Breiman, 2001a). Zhang, Zhao, Zhang, and Wei (2019) show
in a sparse regression setting that feature sampling improves and stabilizes the
performance of feature selection. Furthermore, there are links between feature
sampling and shrinkage: for linear regression, considering only

P
?
P

T

variables
during training is equivalent to ridge regression on the standardized predic-
tors. This generalizes to more complex methods such as GLM (Wager et al.,
2013). Feature sampling in the CMF algorithm thus takes on the crucial role
of regularization.

The entire CMF procedure is implemented in the R package cmfilter,
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available from https:^/github.com/vankesteren/cmfilter. An example
analysis with specific hyperparameters and cutoff score determination is
described in the application section to this paper, with accompanying R code
in the supplementary material.

The CMF method addresses the most important issues associated with both
filter and regularization methods: it conditions on the other mediators while
simultaneously being flexible to the choice of theoretically relevant decision
functions. In the next section, we investigate the performance of CMF through
simulation.

3.3 Simulations
This section is subdivided into two parts. The first part aims to show em-
pirically the theoretical advantages and disadvantages of SEM, filter, XMed,
HIMA, and CMF. We simulate specific conditions which are theoretically chal-
lenging for some but not all methods. The results from the first section are
aimed at generating an understanding of the theoretical background in the
present paper.

The second part is aimed at simulating real-world performance in a con-
trolled high-dimensional situation. The results from this section indicate to
what extent the CMF method outperforms its rival methods in practice, in
addition to providing an anchor for the expected absolute level of performance
in terms of false positives and true positives in such a situation.

All the simulations were run on R version 3.5.0 (R Core Team, 2018).

3.3.1 Theoretical conditions

The goal of this section is to illustrate when each method performs adequately
and when it does not. Two situations are of particular interest: (a) suppres-
sion through correlation among mediators, and (b) noise in the α and β paths,
overshadowing a potential mediator. Filter methods are likely to underperform
in terms of power in the first case, as the effect of a mediator is dependent on
another and marginally invisible. In the second case, the regularization meth-
ods are theorized to under-perform because the α and β paths are regularized
independently whereas it is their combination that indicates mediation.

The data was controlled to behave according to the population, i.e., the
data was transformed to exhibit the exact correlation matrix implied by the
data-generating model. In each simulation, we show the power and false dis-
covery rates of the three methods in 100 simulated datasets of 400-600 observa-
tions. The decision function under consideration for the filter, SEM, and CMF
methods was the Sobel test (Sobel, 1986), one of the most common tests in
the product of coefficients category (MacKinnon et al., 2002). For these tests,
any variable with a p-value below .1 was considered to be a mediator. The
SEM and filter methods were implemented using the lavaan package (Rosseel,
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2012), and CMF was implemented using the accompanying cmfilter package.
For XMed, the regsem package (Jacobucci et al., 2016) was used with cross-
validation was to find the optimal penalty parameter, and any variables with
nonzero α and β paths were considered mediators. HIMA was run according
to its implementation in the R package HIMA (Zhang et al., 2016), again with
a p-value of .1. Further details on the data generation and precise simulation
conditions can be found in the the R code in the supplementary material.

3.3.1.1 Suppression

In the first illustration, the effect of the second β path is 0, but conditional on
the first mediator this effect is nonzero. Its data-generating model is shown
in Figure 3.3. The power to detect the second mediator thus indicates the
robustness of each selection method to a full suppression effect.

cov(M1,M2) = ´0.44 + ´0.4 ¨ 0.4 = ´0.6

cov(M2, Y ) = 0.48 + 0.8 ¨ cov(M1,M2) = 0

-0.4

0.4

-0.44

0.48

0.8M1

M2

X Y

Figure 3.3 Data-generating model for the suppression simulation. Double-
headed arrow indicates residual covariance.

The results are shown in Table 3.1, in the form of power to detect each
mediator. As expected, the filter method fails to detect M2 under the marginal
suppression in this data, whereas the other methods do detect the suppressed
mediator.

Table 3.1 Empirical power, calculated as the proportions of selection for
each mediator in the 100 generated datasets.

Method M1 M2

SEM 1 1
Filter 1 0
XMed 1 1
HIMA 1 1
CMF 1 1
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3.3.1.2 Noise in the α paths

The second illustration considers noise in the form of variables related to X.
In addition to the single mediator, 15 noise variables were generated; the α
path was set to 0.8 for 3 of the variables, and 0.4 for the remaining 12. In
addition, small residual correlations were induced in this set of variables to
more closely resemble real-world patterns. The data-generating mechanism is
shown in Figure 3.4.

This situation challenges XMed, which considers the α and β paths sepa-
rately and is therefore theoretically more likely to select the strong paths rather
than the mediating path, which has strength 0.3.

0.8, 0.4
noise
p = 15

0.3 0.3

X Y

M

Figure 3.4 Data-generating model for the simulation of noise in the α paths.

The results are displayed in Table 3.2 in the form of rates of detection
for each potential mediator. The SEM method performs optimally, as do the
HIMA and CMF methods. The filter and XMed methods do not perform as
well as these, having relatively strong false positive rates and lower power,
respectively.

Table 3.2 Selection rates of each mediator in 100 simulated datasets where
the noise variables (2-16) have a nonzero relation with the X variable. M is
the true mediator, dot indicates 0.

Method M 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
SEM 99 . . . . . . . . . . . . . . .
Filter 100 . . 100 . . . . . 100 . . . 76 . .
XMed . . . . . . . . . . . . . . . .
HIMA 100 . . . . . . . . . . . . . . .
CMF 100 . . . . . . . . . . . . . . .
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3.3.1.3 Noise in the β paths

Like the second illustration, the third adds 15 noise variables alongside the true
mediator. This time, the noise variables are related to the outcome variable
Y . The data-generating mechanism is shown in Figure 3.5.

0.8, 0.4
noise
p = 15

0.3 0.3

X Y

M

Figure 3.5 Data-generating model for the simulation of noise in the β paths.

The results can be found in Table 3.3. The HIMA method, which in the
previous simulations performed as well as the benchmark SEM method, fails
to detect the mediator in any of the 100 iterations. The other methods attain
a perfect score.

Table 3.3 Selection rates of each mediator in 100 simulated datasets where
the noise variables (2-16) have a nonzero relation with the Y variable. M is
the true mediator, dot indicates 0.

Method M 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
SEM 99 . . . . . . . . . . . . . . .
Filter 100 . . . . . . . . . . . . . . .
XMed 92 5 5 6 6 3 4 2 3 4 2 3 4 5 6 3
HIMA . . . . . . . . . . . . . . . .
CMF 100 . . . . . . . . . . . . . . .

3.3.1.4 Suppression and noise

The last illustration combines the above simulations into a single data-
generating mechanism, where both suppression and noise are present, as shown
in Figure 3.6.
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Figure 3.6 Data-generating model for the simulation of suppression with
noise in the α and β paths.

The results of this combined simulation, displayed in Table 3.4 show again
that CMF performs at benchmark level. An interesting quantity for the im-
perfect methods is the positive predictive value (PPV): the probability that a
mediator selected by a method truly mediates the effect of X on Y . For filter
and XMed methods, the PPV is lowered through either a relatively low true
positive rate (power) or a high false positive rate (type-I error).

Table 3.4 True positive rates, false positive rates, and positive predictive
values (PPV) of the combined suppression and noise simulation. The PPV
indicates the probability that a mediator selected by the method is a true
mediator.

Method Power M1 Power M2 FPR PPV
SEM 0.99 0.99 0.000 1.00
Filter 1.00 0.00 0.000 1.00
XMed 0.88 0.87 0.097 0.37
HIMA 1.00 0.00 0.000 1.00
CMF 1.00 1.00 0.000 1.00

3.3.1.5 Interim conclusion

While the considered data-generating mechanisms are very specific, the differ-
ences in performance between the methods can be exacerbated and diminished
by altering the parameter values while preserving the structure. Overall, CMF
is the only method that performs as well as the baseline in all of these data-
generating mechanisms. Together, they show that this method is robust to
boundary cases where other methods may fail. This is a valuable property of a
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mediator selection method, because these situations may occur simultaneously,
with no way to test them in real-world datasets. In the next part, we explore
how well the CMF method performs in high-dimensional circumstances, where
the baseline optimal SEM method cannot work.

3.3.2 High-dimensional mediation simulation

In this section, we compare the performance of the available EMA methods in
a simplified high-dimensional situation. Due to the wide nature of the dataset
(p = 1000), the benchmark default SEM method is unavailable.

3.3.2.1 Simulation setup

Following one of the high-dimensional simulation conditions of Zhang et al.
(2016), the dataset consists of 100 samples and 1000 potential mediators. These
mediators are generated in four uncorrelated blocks: one block with true medi-
ators (M), one with noise variables related to X (A), one noise block covarying
with Y (B), and one large “white noise” block without any covariance (I). The
general structure can be found in Figure 3.7. For each of the simulations, this
structure was created as a sparse block matrix using the Matrix package (Bates
& Maechler, 2017), after which multivariate normal data was generated using
the sparseMVN package (Braun, 2018). Specific data generation and simulation
R code can be found in the supplementary materials.

M
A

I
. . .

X

Y

B

Figure 3.7 General covariance structure for the high-dimensional perfor-
mance simulation. In the white sections of the matrix, there is no covariance.
The true mediator block M is related to both X and Y , whereas the corre-
lating noise blocks are related to either X (block A) or Y (block B). The
largest block is the identity matrix block I, which generates only unrelated
noise variables.

Note that unlike the illustrative simulations, these data favor the filter
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method: there is no suppression or excessive interdependence of potential me-
diators. Therefore, the filter method is the benchmark in this simulation. The
XMed method was omitted from this simulation because it requires estimation
of the full SEM model before regularizing: it would need to be adjusted to
work with high-dimensional data.

3.3.2.2 Results

The results are displayed in Table 3.5. The CMF method has the highest true
positive rate, and a medium false positive rate, leading to a similar positive
predictive value (PPV) to the filter method. In other words, the mediators
selected by CMF are as likely to be true mediators as those selected by the
benchmark filter method. As true positive rates and false positive rates can be
adjusted by the choice of alpha level, we conclude that the CMF method also
performs at benchmark level in this high-dimensional situation.

Table 3.5 True positive rates, false positive rates, and positive predictive
values for the high-dimensional data simulation. Note that XMed failed to
run as-is for the simulated datasets, as it required running the full SEM model
before regularizing.

Power Type I Error PPV
CMF 0.2648 0.00258 0.5068
Filter 0.2412 0.00235 0.5124
HIMA 0.0686 0.00941 0.0323

3.4 Application to epigenetic data
In this section, we show how the CMF method can be used for exploratory
mediation analysis in a real-world setting. Aside from the results shown here,
the full R syntax is available in the supplementary material.

Houtepen et al. (2016) researched which locations in the genome are likely
to mediate the relation between childhood trauma and stress reactivity later
in life. In order to identify the genomic locations, they measured methylation
at CpG sites using array based technology. In a discovery sample, they found
a location of interest which they subsequently researched further and related
to functional changes in the human prefrontal cortex.

Here, we re-analyze the original discovery sample dataset to investigate
whether CMF yields different potentially relevant locations compared to the
correlational filter analysis of the original authors.

3.4.0.1 Dataset and preprocessing

The dataset of the discovery sample was obtained from ArrayExpress, the data
repository of the European Bioinformatics Institute: https://www.ebi.ac.uk/
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arrayexpress/experiments/E-GEOD-77445. The sample consists of 85 healthy
individuals. The X variable is score on a childhood trauma questionnaire
and the Y variable is the increase in cortisol after a stress test defined as
increase in the area under the curve (iAUC). The 385 884 potential mediators
M were taken from the analysis of DNA methylation in the blood, with default
preprocessing. From the available respondent characteristics, age and sex were
considered to be confounders. For full details of the dataset, see (Houtepen et
al., 2016).

Before analysis, X, Y , and M were residualized with respect to their in-
tercept, age, and sex. Since the number of M variables was so large, the last
preprocessing step was a straightforward univariate filter. For this, the top
1000 potential mediators in terms of their absolute product of correlations
with X and Y were retained. For more details, see the preprocessing R code in
the supplementary materials.

3.4.0.2 Analysis and Results

The CMF algorithm was performed using the centered X and Y and the 1000
potential mediators M . The Sobel test with a p-value of 0.1 was used as the
decision function D and 10 000 iterations with random starts were run to ensure
stability of the results. After inspecting the scree plot of the selection rates, the
cutoff for selection was set to 0.075. The resulting selection rates and selected
cg locations in the genome are shown in Figure 3.8.
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Figure 3.8 Selection rates of the potential mediators in the methylation
dataset.

These locations were annotated using the BioConductor package
FDb.InfiniumMethylation.hg18 (Triche, 2014) to find the nearest protein-
coding gene. The shortened descriptions were summarized from the GeneCards
database (Safran et al., 2002). The result is shown in Table 3.6.
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Table 3.6 Annotation of the selected mediators from the CMF algorithm.

Probe Gene Description

cg16657538 ZSCAN30 Involved in transcriptional regulation
cg25626453 PRRC2A Associated with the age-at-onset of diabetes
cg02309301 ARGLU1 Associated with sexual development
cg13136721 RPTOR Involved in regulation of cell growth and survival
cg12500973 HNRNPF Involved in regulation of mRNA

Inspecting and comparing these results more closely, two of the locations
identified by CMF have been previously associated with development through-
out the lifespan: PRRC2A and ARGLU1. These two locations are also in the
top 10 of the lists generated by HIMA and filter. In addition, the RPTOR
gene has been associated with cell growth and survival – development on a
cellular level. Relative to other sites, this last location does not have a strong
correlation with either childhood trauma (r = 0.186) or stress reactivity (r =
0.233), but due to its conditional indirect effect it is deemed relevant by both
CMF and HIMA. The ZSCAN30 gene has a small marginal correlation with
stress reactivity (r = 0.096) which lowers its rank for both the filter and HIMA
methods. However, due to its strong correlation with childhood trauma (r =
0.347) and its conditional relevance this site is still high on the list for CMA.

In conclusion, CMA has overlap with other methods but can identify rele-
vant locations that other methods may miss. Further research using replication
samples could focus on exploring whether and how methylation at these loca-
tions may alter stress reactivity after childhood trauma.

3.5 Discussion
Structural equation modeling, the benchmark method for exploratory medi-
ation analysis, is unavailable in the case of high-dimensional data. Several
alternative methods exist, but in the current paper we have shown through
simulations that these underperform in situations with specific dependence
among mediators, noise variables related to either X or Y , or a combination
thereof. Taking these situations into account, we have introduced CMF, a hy-
brid algorithmic method to identify from a set of potential mediators the most
likely true mediators.

CMF improves upon the existing methods by combining the estimation
method from regularized regression with the theory-based decision functions
from classic mediation analysis. It extends EMA with theoretically relevant
decision functions to the high-dimensional case. As a full package including a
software implementation, it is flexible to the choice of decision function, robust
in the tested situations, and it scales to multiple processor cores.

Besides its role as a novel method for EMA, CMF contributes several ideas
to the statistical literature. It shows that the use of cyclically calculated resid-
uals is applicable beyond regression into the territory of structural equation
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modeling. In addition, its performance is greatly improved by feature sub-
sampling, which has regularizing effects on the estimated parameters and thus
on the mediator selections. CMF is an example of how combining a deter-
ministic algorithm with a stochastic outer component can lead to adequate
performance.

One result of the approach taken in this paper is that there is no formal
proof of convergence, and the algorithm may take a long time to stabilize. In
addition, the complications introduced in the outer loop make determination
of the cutoff for selection nontrivial. In general, the algorithm will output a
top-N vector of most selected mediators, and potential options for deciding
which cutoff to take are visual inspection of the scree plot or a form of parallel
analysis (Horn, 1965). In addition, the error rates (type I and type II errors)
are not analytically defined and have a complex relation with the alpha level
of the base decision function. This could be investigated empirically in the
future.

For this work, we only considered direct feature selection on the set of M
variables. Another solution is projecting the available features onto a low-
dimensional space before or during estimation. Feature selection can then be
performed in this space, leading to variable importance upon reprojection to
the original space. Examples are PCA, PLS, or the directions of mediation
method by Chén, Crainiceanu, Ogburn, Caffo, and Wager (2017). However,
we chose to exclude these methods because they do not select mediators, but
rather linear combinations of all mediators.

Our coordinate-wise mediation filter bears resemblance to a class of meta-
heuristic algorithms in the SEM literature for specification search (K. M. Mar-
coulides & Falk, 2018). These algorithms perform an exploratory search for the
optimal model based on overall model fit, e.g., the BIC objective. CMF could
be considered specification search where the objective is not overall model fit
but mediation analysis: it is targeted towards determining whether a specific
variable is relevant to a process rather than searching for the optimal model.
In addition, CMF performs regularization required for high-dimensional data.
In the future, other specification search strategies could be implemented for
EMA, but they each need to be adjusted to incorporate both a specific medi-
ation objective and regularization.

Future research should focus on embedding mediation analysis theory di-
rectly in penalization procedures for these datasets, either in a classical estima-
tion setting (Zhao & Luo, 2016) or using Bayesian estimation with shrinkage
priors (van Erp et al., 2019). More generally, enriching structural equation
models beyond EMA with embedded feature selection mechanisms will enable
social and behavioral scientists to develop and test theories on novel, high-
dimensional datasets.
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Chapter 4

Exploratory Factor Analysis with Structured

Residuals for Brain Network Data

Van Kesteren, E. J. & Kievit, R. A., (2020, In Press). Exploratory Factor Anal-
ysis with Structured Residuals for Brain Network Data. Network Neuroscience.
doi:10.1162/netn_a_00162

Dimension reduction is widely used and often necessary to make
network analyses and their interpretation tractable by reducing
high dimensional data to a small number of underlying variables.
Techniques such as Exploratory Factor Analysis (EFA) are used
by neuroscientists to reduce measurements from a large number of
brain regions to a tractable number of factors. However, dimen-
sion reduction often ignores relevant a priori knowledge about the
structure of the data. For example, it is well established that the
brain is highly symmetric. In this paper, we (a) show the adverse
consequences of ignoring a priori structure in factor analysis, (b)
propose a technique to accommodate structure in EFA using struc-
tured residuals (EFAST), and (c) apply this technique to three large
and varied brain imaging network datasets, demonstrating the su-
perior fit and interpretability of our approach. We provide an R
software package to enable researchers to apply EFAST to other
suitable datasets.

4.1 Introduction
Using modern imaging techniques, it is possible to investigate brain networks
involving many regions, across different modalities such as grey matter volume,
white matter tracts, and functional connectivity. To examine the relation
of these networks with external variables of interest, it is often necessary to
summarize them using a small number of dimensions – often called factors
or components. These low-dimensional components representing the networks
can be tracked over the lifespan (de Mooij, Henson, Waldorp, & Kievit, 2018;
DuPre & Spreng, 2017), compared to behavioural measures (Colibazzi et al.,

Author contributions: EJK & RAK developed the idea, wrote and revised the manuscript.
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2008), or related to phenotypes such as intelligence (Ferguson, Anderson, &
Spreng, 2017). In the fields of statistics and mathematics, such methods for
making analyses tractable and interpretable are collectively called dimension
reduction.

Many popular dimension reduction techniques make use of covariance. For
example, principal components analysis (PCA) can be estimated using only
a decomposition of the covariance matrix. Covariance underlies many brain
imaging and network analysis approaches, too: in analysis of structural connec-
tivity, regions of grey matter volume or white matter tractography which co-
vary across individuals may constitute connected networks (Alexander-Bloch,
Giedd, & Bullmore, 2013; Mechelli, Friston, Frackowiak, & Price, 2005), and
in resting-state fMRI analysis, regions which covary within an individual over
time are considered to have a functional connection (Van Den Heuvel & Pol,
2010). Thus, dimension reduction on the basis of covariance matrices is directly
applicable to the field of network neuroscience.

Exploratory factor analysis (EFA) is one such method for dimension re-
duction based on covariance. EFA models the observed covariance matrix of
a set of P variables by assuming there are M ă P factors, which predict the
values on the observed variables. Although other techniques such as PCA and
Independent Component Analysis (ICA) are more common in neuroimaging
analysis, EFA has been used since the early days of MRI (see McIntosh and
Protzner, 2012 for a review and Machado, Gee, and Campos, 2004 for an early
methodological investigation). For instance, Tien et al. (1996) performed an
EFA on 60 controls and 44 schizophrenia patients for a selection of regions of
interest, explicitly noting the high degree of left/right symmetry and a disrup-
tion of this symmetry in patients. Similarly early studies used EFA to model
morphology (Stievenart et al., 1997) and width (Denenberg, Kertesz, & Cow-
ell, 1991) of the corpus callosum. Some approaches combined SEM and PCA
to model latent factors of grey matter structure in clinical populations (Yeh et
al., 2010). These approaches have also been used to study typical population
of children and adults (Colibazzi et al., 2008). More recently, EFA has been
used to reduce individual differences in white matter microstructure in clinical
populations (Herbert et al., 2018), as well as (extremely) large scale population
studies (Cox et al., 2016). Hybrid approaches have combined exploratory and
confirmatory factor analysis approaches (Baskin-Sommers, Neumann, Cope,
& Kiehl, 2016; de Mooij et al., 2018) and used EFA in multimodal structural
acquisitions (Mancini et al., 2016). EFA has also been used for functional imag-
ing, including both fMRI (e.g., G. A. James et al., 2009) and EEG (Scharf &
Nestler, 2018; Tucker & Roth, 1984). Most excitingly, recent work has used
EFA to compare and contrast patterns of individual differences in brain struc-
ture at baseline with individual differences in developmental change over time,
noting striking differences in dimensionality of change versus cross-sectional
differences (Cox et al., 2020). Although the above is not intended to be a
comprehensive review, it shows that EFA has been used widely in the imaging
literature since early days.
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Many related dimension reduction techniques exist beyond EFA, including
Partial Least Squares (PLS), Independent Component Analysis (ICA), spec-
tral decomposition, and many more beyond our current scope (see Roweis &
Ghahramani, 1999; Sorzano, Vargas, & Montano, 2014). All of these tech-
niques aim to approximate the observed data by means of a lower-dimensional
representation. These techniques, although powerful, share a particular limi-
tation, at least in their canonical implementations, namely that they cannot
easily integrate prior knowledge of (additional) covariance structure present in
the data. In other words, all observed covariation is modeled by the underlying
factor structure.

This limitation is relevant in the context of structural and functional brain
connectivity data because of symmetry: Much like other body parts, contralat-
eral (left/right) brain regions are highly correlated due to developmental and
genetic mechanisms which govern the gross morphology of the brain. Ignor-
ing this prior information will adversely affect the dimension reduction step,
leading to worse representation of the high-dimensional data by the extracted
factors. Simple workarounds, such as averaging left and right into a single in-
dex per region, have other drawbacks: they throw away information, preclude
the discovery of (predominantly) lateralized factors, and prevent the study of
(a)symmetry as a topic of interest in and of itself.

Other classes of techniques, developed largely within psychometrics, can
naturally accommodate additional covariance structure such as symmetry.
These techniques started with multitrait - multimethod (MTMM) matrices
(Campbell & Fiske, 1959) and later confirmatory factor analysis (CFA) with
residual covariances (e.g., Kenny, 1976). MTMM is designed to extract factors
when these factors are measured in different ways: when measuring personal-
ity through a self-report questionnaire and behaviour ratings, there are factors
that explain correlation among items corresponding to a specific trait such as
’extraversion’, and there are factors that explain additional correlation between
items because they are gathered using the same methods (self-report and be-
havioural ratings). Thus MTMM techniques separate the correlation matrix
into two distinct, summative parts: correlation due to the underlying traits
(factors) of central interest, and correlation due residual structure in the mea-
surements. However, MTMM requires a priori knowledge of the trait structure
(e.g., the OCEAN model of personality) for estimation.

In this paper, we combine dimension reduction (e.g., across many brain re-
gions) and prior structure knowledge (e.g., symmetry) by introducing EFA with
structured residuals (EFAST). EFAST builds on standard implementations of
EFA, CFA, and MTMM, but goes beyond these techniques by simultaneously
allowing for exploration and the incorporation of residual structure. We show
that EFAST outperforms EFA in empirically plausible scenarios, and that ig-
noring the problem of structured residuals in these scenarios adversely affects
inferences.

This paper is structured as follows. First, we explain why using standard
EFA or CFA for brain imaging data may lead to undesirable results, and we

61



develop EFAST based on novel techniques from structural equation modeling
(SEM). Then, we show that EFAST performs well in simulations, demonstrat-
ing superior performance compared to EFA in terms of factor recovery, factor
covariance estimation, and the number of extracted factors when dealing with
symmetry. Third, we illustrate EFAST in a large neuroimaging cohort (Cam-
CAN; Shafto et al., 2014). We illustrate EFAST for three distinct datasets:
Grey matter volume, white matter microstructure and within-subject fMRI
functional connectivity. We show how EFAST outperforms EFA both con-
ceptually and statistically in all three datasets, showing the generality of our
technique. We conclude with an overview and suggestions for further research.

Accompanying this paper, we provide tools for researchers to use and ex-
pand upon with their own datasets. These tools take the form of (a) an R
package called efast and a tutorial with example code (https://github.com/
vankesteren/efast), and (b) synthetic data and code to reproduce the empiri-
cal examples and simulations (https://github.com/vankesteren/efast_code).

4.2 Factor analysis with structured residuals
In this section, we compare and contrast existing approaches in their ability
to perform factor analysis in an exploratory way while at the same time ac-
counting for residual structure. We discuss new developments in the field of
exploratory structural equation modeling (ESEM) that enable simultaneous
estimation of exploratory factors and structured residuals, after which we de-
velop the EFAST model as an ESEM with a single exploratory block. We will
use brain morphology data with bilateral symmetry as our working example
throughout, although the principles here can be generalized to datasets with
similar properties.

EFA, as implemented in software programs such as SPSS, R, and Mplus,
models the observed correlation matrix through two summative components:
the factor loading matrix Λ, relating the predefined number M of factors to the
observed variables, and a diagonal residual variance matrix Θ, signifying the
variance in the observed variables unexplained by the factors. Using maximum
likelihood, principal axis factoring, or least squares (Harman & Jones, 1966),
the factor loadings and residual variances are estimated such that the implied
correlation matrix Σ = ΛΛT + Θ best approximates the observed correla-
tion matrix S. After estimation, the factor loadings are rotated to their final
interpretable solution using objectives such as oblimin, varimax, or geomin
(Bernaards & Jennrich, 2005).

We illustrate the challenge and the rationale behind our approach in Figure
4.1. The true correlation matrix is highlighted on the left, with correlations
due to three factors shown as diagonal blocks. However, there is also consider-
able off-diagonal structure: the secondary diagonals show a symmetry pattern
similar to that observed in real-world brain structure data (Taylor et al., 2017).
The top panel of the figure shows that a traditional EFA approach will separate
this data matrix into two components: (a) covariance due to the hypothesized
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factor structure and (b) the diagonal residual matrix. The key challenge is
that EFA will attempt to approximate all the off-diagonal elements of the cor-
relation matrix through the factors, even if this adversely affects the recovery
of the true factor structure. Performing EFA with such a symmetry pattern
may affect the factor solution in a variety of ways. For instance, in this toy
example, the EFA model requires more than 12 factors to represent the data,
instead of the three factors specified (see Appendix B.1). In other words, in
such cases it is essential to incorporate the known residual structure via a set
of additional assumptions.

ΛΨΛT Θ+

ΛΨΛT Θ+ Θstructure+

Exploratory factor analysis

Observed correlation

Confirmatory factor analysis with structured residuals

Figure 4.1 Example observed correlation matrix and its associated decom-
position according to EFA (top) and according to CFA (bottom) into a factor-
implied correlation component (ΛΨΛT ), residual variance component Θ, and
– in CFA with residual structure only – residual structure component.

As an alternative to EFA, we may implement a Confirmatory Factor Anal-
ysis (CFA) instead. In contrast to EFA, CFA imposes a priori constraints on
the Λ matrix: some observed variables do not load on some factors. More-
over, in contrast to standard EFA approaches, residual structure can be easily
implemented in CFA using standard SEM software such as lavaan (Rosseel,
2012). In other words, CFA would allow us to tackle the problem in Figure
1: We can allow for the residual structure known a priori to be present in the
data. By allowing for the residual structure in the data, a CFA yields the im-
plied matrices shown in the bottom panel of Figure 4.1, retrieving the correct
factor loadings, residual variance, and residual structure. However, this is only
possible because in this toy example we know the factor structure - In many
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empirical situations this is precisely what we wish to discover. In the absence
of theory about the underlying factors, it is thus not possible to benefit from
these features of CFA.

As such, we need an approach that can combine the strengths of EFA
(estimating the factor structure in the absence of strong a priori theory) with
those from CFA (the potential to allow for a priori residual structure). Here,
we propose a hybrid between the two, which we call exploratory factor analysis
with structured residuals, or EFAST. In order to implement and estimate these
models, we make use of recent developments in the field of structural equation
modeling (SEM). In the next section, we explain how these developments make
EFAST estimation possible.

4.2.1 Exploratory SEM

Exploratory SEM (ESEM) is an extension to SEM which allows for blocks
of exploratory factor analysis within the framework of confirmatory SEM
(Asparouhov & Muthén, 2009; Brown, 2006; Guàrdia-Olmos, Peró-Cebollero,
Benítez-Borrego, & Fox, 2009; Jöreskog, 1969; Marsh, Morin, Parker, & Kaur,
2014; Rosseel, 2019). ESEM is a two-step procedure. In the first step, a regular
SEM model is estimated, where each of the EFA blocks have a diagonal latent
covariance matrix Ψ and the Λ matrix of each block is of transposed echelon
form, meaning all elements above the diagonal are constrained to 0. For a
nine-variable, three-factor EFA block b the matrices would then be:

Ψb =

1 0 0
0 1 0
0 0 1

 , Λb =



λ11 0 0
λ21 λ22 0
λ31 λ32 λ33

λ41 λ42 λ43

λ51 λ52 λ53

λ61 λ62 λ63

λ71 λ72 λ73

λ81 λ82 λ83

λ91 λ92 λ93


This means there are M2

b constraints for each EFA block b. This is the same
number of constraints as conventional EFA (Asparouhov & Muthén, 2009).
The second step in ESEM is to rotate the solution using a rotation matrix H.
Just as in regular EFA, this rotation matrix is constructed using objectives
such as geomin or oblimin. In ESEM, the rotation affects the factor loadings
and latent covariances of the EFA blocks, but also almost all other parameters
in the model (Asparouhov and Muthén (2009) provide an overview of how
rotation changes these parameter estimates). Despite these changes, a key
property of ESEM is that different rotation solutions lead to the same overall
model fit.

ESEM has long been available only in Mplus (Asparouhov & Muthén,
2009; Muthén & Muthén, 1998). More recently, it has become available in

64



open sourced R packages psych (for specific models, Revelle, 2018) as well
as lavaan (since version 0.6-4, Rosseel, 2019) – a comprehensive package for
structural equation modeling. An example of a basic EFA model using lavaan
syntax with 3 latent variables and 9 observed variables is the following:

efa("block1")*F1 =~ x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9
efa("block1")*F2 =~ x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9
efa("block1")*F3 =~ x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9

In effect, this model specifies three latent variables (F1, F2, and F3) which
are each indicated by all 9 observed variables (x1 to x9). The efa("block1")
part is a modifier for this model which imposes the constraints on Ψ and
Λ mentioned above. For a more detailed explanation of the lavaan syntax,
see Rosseel (2012). Figure 4.2 shows a comparison of the factor loadings ob-
tained using conventional factor analysis (factanal() in R) and lavaan’s efa()
modifier. As shown, the solution obtained is exactly the same, with perfect
correlation among the loadings for each of the factors.
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Figure 4.2 Exploratory factor analysis of 9 variables in the Holzinger and
Swineford (1939) dataset. On the y-axis are the estimated factor loadings
using the oblimin rotation functionality in lavaan version 0.6-4, and the load-
ings on the x-axis are derived from factanal with oblimin rotation from the
GPArotation package (Bernaards & Jennrich, 2005). The loadings are all on
the diagonal with a correlation of 1, meaning the solutions obtained from
these different methods are equal.

With this tool as the basis for model estimation, the next section provides
a detailed development of the construction of EFAST models.

4.2.2 EFAST models

We propose using EFA with corrections for contralateral covariance within the
ESEM framework. The corrections we propose are the same as in MTMM
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models or CFA with residual covariance. In EFAST the method factors use
CFA, and the remaining correlations are explained by EFA. Thus, unlike stan-
dard MTMM methods, EFAST contains exploratory factor analysis on the trait
side, as the factor structure of the traits is unknown beforehand: the goal of
the analysis is to extract an underlying low-dimensional set of features which
explain the observed correlations as well as possible. For our running example
of brain imaging data with contralateral symmetry, we consider each ROI a
“method” factor, loading on only two regions. Note that in the context of brain
imaging, Lövdén et al. (2013, Figure 1, model A) have had similar ideas, but
their factor analysis operates on the level of left-right combined ROIs rather
than individual ROIs.

The EFAST model has M exploratory factors in a single EFA block, and
one method factor per homologous ROI pair, each with loadings constrained
to 1 and its own variance estimated. The estimated variance of the method
factors then represents the amount of covariance due to symmetry – over and
above the covariance represented by the traits. In Figure 4.3, the model is
displayed graphically for a simplified example with 6 ROIs in each hemisphere.
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Figure 4.3 EFAST model with morphology of 6 regions of interest measured
in the left hemisphere (LH) and right hemisphere (RH). The dashed lines
indicate fixed loadings, the two-headed arrows indicate variance/covariance
parameters. The method factors are constrained to be orthogonal, and the
loadings of the M traits are estimated in an exploratory way.

An alternative parametrization for this model is also available. Specifically,
we can use the correlations between the residuals of the observed variables
instead of method factors with freely estimated variances. In the SEM frame-
work, this would amount to moving the symmetry structure from the factor-
explained matrix (ΛΨΛT ) to the residual covariance matrix Θ. This model
is exactly equivalent, meaning the same correlation matrix decomposition, the
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same factor structure, and the same model fit will be obtained. However,
we favour the method factor parametrization as it is closer to MTMM-style
models, it is easier to extract potentially relevant metrics such as a ‘lateralisa-
tion coefficient’, and easier to extend to other data situations where multiple
indicators load on each method factor.

To implement the EFAST model we use the package lavaan, which allows
for easy scaling of the input data, different estimation methods, missing data
handling through full information maximum likelihood, and more. Estimation
of the model in Figure 4.3 can be done with a variety of methods. Here we
use the default maximum likelihood estimation method as implemented in
lavaan. Accompanying this paper, we are making available a convenient R
package called efast that can fit EFAST models for datasets with residual
structure due to symmetry. For more implementation details, the package and
its documentation can be found at https://github.com/vankesteren/efast.

In the next section, we show how our implementation of EFAST compares to
regular EFA in terms of factor loading estimation, factor covariance estimation,
as well as the estimated number of factors.

4.3 Simulations
In this section, we use simulated data to examine different properties of EFAST
models when compared to regular EFA in controlled conditions. The purpose
of this simulation is not an exhaustive investigation, but rather a pragmatically
focused study of data properties (neuro)scientists wishing to use this technique
are likely to encounter. First, we explain how data were simulated to follow a
specific correlation structure, approximating the general structure of empirical
data such as that in the Cam-CAN study (see empirical examples section).
Then, we investigate the effects of structured residuals on the extracted factors
from EFA and EFAST: in several different conditions, we investigate how the
estimation of factor loadings, the covariances between factors, and the number
of factors changes with increasing symmetry.

4.3.1 Data generation

Data were generated following a controlled population correlation matrix
Σtrue. This matrix represents the true correlation between measurements of
brain structure in 17 left-hemisphere and 17 right-hemisphere regions of in-
terest. An example correlation matrix from our data-generating mechanism is
shown in Figure 4.4.

Σtrue was constructed through the summation of three separate matrices,
as in the lower panel of Figure 4.1:

1. The factor component Σfactor is constructed as ΛΨΛT , where the un-
derlying factor covariance matrix Ψ can be either an identity matrix (or-
thogonal factors) or a matrix with nonzero off-diagonal elements (oblique
factors). There are four true underlying factors in this simulation. One
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of the factors is completely lateralized (top left, highlighted in green),
meaning that it loads only on ROIs in the left hemisphere. An addi-
tional illustration of this left-hemisphere factor is shown in Figure 4.5.
The remaining 3 factors have both left- and right-hemisphere indicators.

2. The structure component matrix is a matrix with all 0 elements except on
the secondary diagonal, i.e., the diagonal elements of the bottom left and
top right quadrant are nonzero. The values of these secondary diagonals
determine the strength of the symmetry.

3. The residual variance component matrix is a diagonal matrix where the
elements are chosen such that the diagonal of Σtrue is 1.
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Figure 4.4 Example covariance matrix of the data-generating mechanism
used in the simulations. This matrix results from simulated data of 650
brain images, with a factor loading of .595 for the lateralized factor, a load-
ing of .7 for the remaining factors, a factor correlation of .5, and a symmetry
correlation of .2. The first 17 variables indicate regions of interest (ROIs) in
the left hemisphere, and the remaining variables indicate their contralateral
homologues. Note the secondary diagonals, indicating contralateral symme-
try, and the block of 8 variables in the top left resulting from the lateralized
factor.

68



left

right

lateral medial
side

he
m
is
ph
er
e

Figure 4.5 Example lateralized factor (the first factor in the simulation).
Grey matter volume in 8 left-hemisphere regions of interest are predicted by
the value on this factor.

For the following sections, data were generated with a sample size of 650,
130, or 65, a latent correlation of either 0 or 0.5, bilateral factor loadings of
0.5 or 0.7, lateral factor loadings of .425 or .595, and contralateral homology
correlations of either 0 (pure EFA), 0.2 (minor symmetry), or 0.4 (major sym-
metry). These conditions were chosen to be plausible scenarios, similar to the
observed data from our empirical examples. In each condition, 120 datasets
were generated on which EFA and EFAST models with 4 factors were esti-
mated. Thus, in each analysis the true number of factors is correctly specified
before estimation. In the last simulation we then explore different criteria for
the choice of number of factors in the case of contralateral symmetry.

4.3.2 Effect of structured residuals on factor loadings

In this section, we compare estimated factor loadings from EFA and EFAST
to the true factor loadings from the simulation’s data generating process. For
each condition, 120 datasets were generated, to which both EFA and EFAST
models were fit. The factor loading matrix for each model was then extracted,
the columns reordered to best fit the true matrix, and the mean absolute error
of the factor loadings per factor was calculated.

As hypothesized, allowing structured residuals affects how well the factor
loadings are estimated from the datasets. Notably, as shown in 4.6 when
performing regular EFA, the estimation error of the factor loadings increases
when the symmetry becomes stronger, whereas the factor loading estimation
error for the EFAST model remains at the level of regular EFA when there is no
symmetry. Looking at the lateralized factor in particular, the adverse effect of
omitting symmetry in dimension reduction becomes even stronger: in EFA, the
lateralized factor becomes bilateral, leading to a larger error and an incorrect

69



inference regarding the nature of the thus estimated factor. Although Figure
4.6 shows only the condition with a sample size of 650, factor loadings of 0.5,
and factor covariance of 0.5, the pattern is similar for different sample sizes,
different factor loading strengths and with no factor covariance (see Appendix
B.2 and B.3).
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Figure 4.6 Mean absolute error for factor loadings of EFA versus EFAST
models with increasing amounts of contralateral symmetry correlation. This
plot comes from the condition where the sample size is 650, the covariance
of the latent variables is 0.5, and the factor loadings are 0.5. The plot shows
that for both bilateral and lateralised factors, EFA starts to exhibit more
error as symmetry increases, more so for the lateral factor, whereas EFAST
performance is nominal over these conditions. Error bars indicate 95% Wald-
type confidence intervals.

In addition, sample size analysis shows that EFAST and EFA show moder-
ate to high convergence rates for small (65) to moderate (130) sample sizes (see
Appendix B.4) Although other drawbacks of smaller sample sizes remain (e.g.,
imprecise estimates, favouring of insufficiently complex models), this shows the
feasibility, in principle, of using such analyses in commonly available sample
sizes. To assess whether a particular combination of sample size, atlas dimen-
sionality (i.e. number of regions) and strength of factor loadings is feasible
for analysis using EFAST, we recommend a simulation approach. Software
packages such as lavaan offer versatile tools to generate data under various
specifications, allowing researchers to see whether a particular analysis is in
principle feasible under certain idealized conditions before proceeding with real
data.
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Results from this section suggest that for the purpose of factor loading es-
timation, EFA and EFAST perform equally well in the case where a model
without residual structure is the true underlying model, but EFAST outper-
forms EFA when residual structure in the observed data becomes stronger. In
other words, implementing EFAST in the absence of residual structure does not
seem to have negative consequences for estimation error, suggesting it may also
be a useful default if a specific residual structure is thought, but not known,
to exist. This is in line with Cole, Ciesla, and Steiger (2007), who argue that
in many situations including correlated residuals does not have adverse effects,
but omitting them does.

4.3.3 Effect of structured residuals on factor covariances

Here, we compare how well EFA and EFAST retrieve the true factor covariance
values. For both methods, we used geomin rotation with an epsilon value of
0.01 as implemented in lavaan 0.6.4 (Rosseel, 2019). The matrix product of
the obtained rotation matrix H then represents the estimated factor covariance
structure of the EFA factors: ΨEFA = HTH (Asparouhov & Muthén, 2009,
eq. 22).

The mean of the off-diagonal elements of the ΨEFA matrix were then com-
pared to the true value of 0.5 for increasing symmetry strength. The results are
shown graphically in Figure 4.7. Here, it can be seen that with this rotation
method the latent covariance is underestimated in all cases, although less so
with stronger factor loadings. Furthermore, EFA performs worse as the sym-
metry increases, whereas the performance of EFAST remains stable regardless
of the degree of contralateral homology, again suggesting no adverse effects to
implementing EFAST in the absence of contralateral correlations. In the case
of uncorrelated factors (not shown), the two methods perform similarly well.
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Figure 4.7 Latent covariance estimates for different levels of contralateral
homology correlation. The true underlying latent covariance is 0.5; both
methods underestimate the latent covariance but EFA becomes more biased
as symmetry increases. Error bars indicate 95% Wald-type confidence inter-
vals.

The results from this section shows that in addition to better factor recovery
for EFAST, the recovery of factor covariance is also improved relative to EFA.
Again, even when the data-generating mechanism does not contain symmetry,
EFAST performs at least at the level of the EFA model. Note that in this case
the overall model fit in terms of AIC and BIC is slightly better for the EFA
model, as it has fewer parameters: for factor loadings of .5 and no symmetry,
the mean AIC is 60148 (EFA) versus 60164 (EFAST), and BIC is 60882 (EFA)
versus 60974 (EFAST). This, together with the comparable convergence rates
for most conditions (Fig S4), suggests that it is viable to use EFAST as a ‘keep
it maximal’ strategy (Barr, Levy, Scheepers, & Tily, 2013), where EFAST can
be used initially with no drawbacks, but one can use model evidence to favour
classical EFA instead.

4.3.4 Effect of structured residuals on model fit

In the above analyses, the number of factors was specified correctly for each
model estimation (using either EFA or EFAST). However, in empirical ap-
plications the number of factors will rarely be known beforehand, so has to
be decided on the basis of some criterion. A common approach to extracting
the number of factors, aside from computationally expensive strategies such as
parallel analysis (Horn, 1965), is model comparison through information cri-
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teria such as the AIC or BIC (e.g. (Vrieze, 2012). In this procedure, models
with increasing numbers of factors are estimated, and the best fitting model
in terms of these criteria is chosen.

In this simulation, we generated 100 datasets as in Figure 4.4 – i.e., strong
loadings and medium symmetry – and we fit EFA and EFAST models with 2
to 10 factors. Across these solutions we then compute the information criteria
of interest. Here we choose the two most common information criteria (the
AIC and BIC) as well as the sample-size adjusted BIC (SSABIC), as this is
the default in the ESEM function of the psych package (Revelle, 2018). The
results of this procedure are shown in Figure 4.8. Each point indicates a fitted
model. The means of the information criteria are indicated by the solid lines.
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Figure 4.8 AIC and BIC values for increasing number of factors with EFA
and EFAST models. Lines indicate expectations: the vertices are at the mean
values for these criteria. The true number of factors is 4 (dashed vertical line).

The plot in Figure 4.8 shows that across all factor solutions, EFAST shows
better fit than EFA, suggesting the improvement in model fit outweighs the ad-
ditionally estimated parameters. As the number of requested factors increases
beyond optimality, this model fit improvement diminishes as EFA explains
more of the symmetry structure through the additional factors. In general,
the AIC tends to overextract factors, the BIC slightly underextracts, and the
SSABIC shows the best extraction performance (see also Appendix B.5). In
practice, therefore, we suggest using SSABIC for determining the number of
factors when model fit is of primary concern. Note that a researcher may also
wish to determine the number of factors based on other considerations, such
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as usability in further analysis, estimation tractability, or theory.

4.4 EFAST in practice: Modeling brain imaging data
In the field of cognitive neuroscience, a large body of work has demonstrated
close ties between individual differences in brain structure and concurrent indi-
vidual differences in cognitive performance such as intelligence tasks (Basten,
Hilger, & Fiebach, 2015). Moreover, different aspects of brain structure can be
sensitive to clinical and pre-clinical conditions such as grey matter for multiple
sclerosis (Eshaghi et al., 2018), white matter hyperintensities for cardiovascular
factors (Fuhrmann et al., 2019) and white matter microstructure for conditions
such as ALS (Bede et al., 2015), Huntingtons (Rosas et al., 2010) and many
other conditions.

However, one perennial challenge in imaging is how to deal with the dimen-
sionality of imaging data. Depending on the spatial resolution, a brain image
can be divided into as many as 100,000 individual regions, or voxels, rendering
mass univariate approaches vulnerable to issues of multiple comparison. An
alternative approach is to focus on sections called regions of interest (ROIs)
defined either anatomically (e.g., Desikan et al., 2006) or functionally (e.g.,
Schaefer et al., 2018). However, this only solves the challenge of dimensional-
ity in part, by grouping adjacent voxels into meaningful regions. An emerging
approach is therefore to study how neural measures covary across populations
or time, either in these ROIs (Sripada et al., 2019) or at the voxel level (DuPre
& Spreng, 2017). This offers a promising strategy to reduce the high dimen-
sional differences in brain structure into a tractable number of components, or
factors, not limited by spatial adjacency.

However, standard techniques such as EFA or PCA do not easily allow
for the integration of a fundamental biological fact: That there exists strong
contralateral symmetry between brain regions, such that any given region (e.g.
the left lingual gyrus) is generally most similar to the same region on the
other side of the brain. Here, we show how we can combine the strengths of
exploratory data reduction with the integration of a priori knowledge about
the brain into a more sensible, anatomically plausible factor structure which
can either be pursued as an object of intrinsic interest or used as the basis for
further investigations (e.g. which brain factors are most strongly associated
with phenotypic outcomes).

4.4.1 Empirical example: Grey matter volume

4.4.1.1 Data description

The data we use is drawn from the Cambridge Centre for Ageing and Neu-
roscience (Shafto et al., 2014; Taylor et al., 2017). Cam-CAN is a commu-
nity derived lifespan sample (ages 18-88) of healthy individuals. Notably, the
raw data from the Cam-CAN cohort is freely available through our data por-
tal https://camcan-archive.mrc-cbu.cam.ac.uk/dataaccess/. The sample we
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discuss here is based on 647 individuals. For the purposes of this project we use
morphometric brain measures derived from the T1 scans. Specifically, we used
the Mindboggle pipeline (Klein et al., 2017) to estimate region based grey mat-
ter volume, using the underlying freesurfer processing pipeline. To delineate
the regions, we here use the Desikan-Killiany-Tourville atlas for determining
the ROIs (Klein & Tourville, 2012) as illustrated in Figure 4.9.
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Figure 4.9 Desikan–Killiany–Tourville atlas used in the empirical illustra-
tion, as included in the ggseg package (Mowinckel & Vidal-Piñeiro, 2019).

We focus only on grey matter (not white matter) and only on cortical
regions (not subcortical or miscellaneous regions such as ventricles) with the
above atlas, for a total of 68 brain regions. The correlation matrix of regional
volume metrics is shown in Figure 4.10, where the first 34 variables are regions
of interest (ROIs) in the left hemisphere, and the last 34 variables are ROIs in
the right hemisphere. The presence of higher covariance due to contralateral
homology is clearly visible in the darker secondary diagonal ‘stripes’ which
show the higher covariance between the left/right version of each anatomical
region. Our goal is to reduce this high-dimensional matrix into a tractable set
of ‘brain factors’, which we may then use in further analyses, such as differences
in age sensitivity, in a way that respects known anatomical constraints.
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Figure 4.10 Correlation plot of cortical grey matter volume in 647 T1
weighted images of the Cam-CAN sample, estimated through Mindboggle in
34 brain regions in each hemisphere according to DKT segmentation. Num-
bers on the colour scale indicate the strength of the estimated correlation,
with darker blue indicating stronger positive correlations. Secondary diagonal
lines are visible indicating correlation due to contralateral homology.

The default estimation using EFA will attempt to account for the strong
covariance among homologous regions seen in this data, meaning it is unlikely
for, say, the left insula and the right insula to load on different factors, and/or
for a factor to be characterized only/mostly by regions in one hemisphere. To
illustrate this phenomenon, we first run a six-factor, geomin-rotated EFA for
the above data (the BIC suggests six factors for this data using the EFAST
model). The factor loadings for each ROI in the left and right hemispheres are
plotted in Figure 4.11. A strong factor loading for a ROI in the left hemisphere
is likely to have a strong factor loading in the right hemisphere due to the
homologous correlation, as shown by the strong correlations for each of the
factors.
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Figure 4.11 Left-right hemisphere factor loading correlations. The correla-
tions between the loadings are high, indicating a strong similarity between
the loadings in the left and right hemispheres.

In EFA, the resulting factors thus inevitably capture correlation due to
contralateral symmetry, inflating or deflating factor loadings due to these
contralateral residual correlations. Most problematically from a substantive
neuroscientific standpoint, this distortion means it is effectively impossible
to discover lateralized factors, i.e. patterns of covariance among regions ex-
pressed only, or dominantly, in one hemisphere. This is undesirable, as there
is both suggestive and conclusive evidence that some neuroscientific mecha-
nisms may display asymmetry. For instance, typical language ability is associ-
ated with an asymmetry in focal brain regions (e.g., Bishop, 2013; Gauger,
Lombardino, & Leonard, 1997), whereas structural differences in the right
hemisphere may be more strongly associated with face perception mechanisms
(Frässle et al., 2016). Developmentally, there is evidence that the degree of
asymmetry changes across the lifespan (e.g. Plessen, Hugdahl, Bansal, Hao, &
Peterson, 2014; Roe et al., 2020). Within a SEM context, recent work shows
that model fit of a hypothesized covariance structure may differ substantially
between the right and left hemispheres despite focusing on the same brain
regions (Meyer, Garzón, Lövdén, & Hildebrandt, 2019). The ignorance of tra-
ditional techniques for the residual structure may cause lateralized covariance
factors to appear symmetrical instead, or to not be observed at all.
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4.4.1.2 Results

In this section, we compare the model fit and factor solutions of EFA and
EFAST for the Cam-CAN data, and we show how EFAST decomposes the
correlation matrix in Figure 4.10 into factor, structure, and residual variance
components. The full annotated analysis script to reproduce these results is
available as supplementary material to this manuscript.
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Figure 4.12 AIC and BIC for the with increasing numbers of EFA factors.
Semitransparent points indicate models which are inadmissible either due to
nonconvergence or convergence to a solution with problems (e.g., Heywood
cases). In these cases we plot the information criteria based on the log-
likehood computed at the time the estimation terminated.

Overall, the EFAST model performs considerably better than standard EFA
using common information criteria (Figure 12). The BIC criterion, combined
with the convergence of the models to an admissible solution, suggests that 6
factors is optimal for this dataset. While both AIC and SSABIC show that
more factors may be needed to properly represent the data, we see that this
quickly leads to nonconvergence. We here consider 6 factors to be a tractable
number for further analysis. First and foremost, this 6-factor solution shows
a much better model solution under EFAST (BIC « 87500) than under EFA
(BIC « 90000), emphasizing the empirical benefits of appropriately model-
ing known biological constraints. Additionally, statistical model comparison
through a likelihood ratio test shows that the EFAST model fits significantly
better (see Table 4.1). Other fit measures such as CFI, RMSEA, and SRMR
paint a similar story. The full factor loading matrix for both EFAST and EFA
are shown in Appendix B.6.

The EFAST model decomposes the observed correlation matrix from Figure
4.10 into the three components displayed in Figure 4.13. The most notable
observation here is the separation of symmetry structure (last panel) and latent
factor-implied structure (first panel): the factor solution (first panel) does

78



Table 4.1 Comparing the fit of the EFAST and EFA models with 6 factors,
using a likelihood ratio test and several fit criteria.

CFI RMSEA SRMR χ2 Df ∆χ2 ∆Df Pr(ą χ2)
EFAST 0.912 0.057 0.209 5762.676 1851
EFA 0.843 0.075 0.342 8818.146 1885 3055.471 34 ă .001

not attempt to explain the symmetry structure seen in the data (i.e. the
characteristic diagonal streaks are no longer present). This indicates that the
EFAST model correctly separates symmetry covariance from underlying trait
covariance in real-world data.

Figure 4.13 Extracted correlation matrix components using a 6-factor
EFAST model with unconstrained correlations. Darker blue indicates
stronger positive correlation. From left to right: factor-implied correlations,
residual variance, and structure matrix.

We also extracted the estimated factor covariance, shown as a network plot
in Figure 4.14. For EFA, some latent variables show very strong covariance,
clustering them together due to the contralateral symmetry. This effect is not
visible in the EFAST model, which shows a more well-separated latent covari-
ance structure. This suggests that one consequence of a poorly specified EFA
can be the considerable overestimation of factor covariance, which in turn ad-
versely affects the opportunities to understand distinct causes or consequences
of individual differences in these factors.
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Figure 4.14 Network plots of the latent covariance for EFA (panel A) and
EFAST (panel B).

4.4.2 Empirical example: White matter microstructure

4.4.2.1 Data description

Our second empirical example uses white matter structural covariance net-
works. We use 42 tracts from the ICBM-DTI-81 atlas (Mori et al., 2008), in-
cluding only those tracts with atlas-separated left/right tracts (i.e. excluding
divisions of the corpus callosum – For a full list, see appendix). As anatomical
metric we use tract-based mean fractional anisotropy, a summary metric sen-
sitive (but not specific) to several microstructural properties (Jones, Knösche,
& Turner, 2013). For more details regarding the analysis pipeline, see (Kievit,
Davis, Griffiths, Correia, & Henson, 2016). The same tracts and data were
previously analysed in (Jacobucci, Brandmaier, & Kievit, 2019).
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Figure 4.15 Correlation matrix for Cam-CAN white matter tractography
data (fractional anisotropy). Numbers on the colour scale indicate the
strength of the estimated correlation, with darker blue indicating stronger
positive correlations. Secondary diagonal lines are visible indicating correla-
tion due to contralateral homology.

4.4.2.2 Results

We chose 6 factors for the EFAST and EFA models based on the SSABIC in
combination with the convergence limitations. In Table 4.2, the two models
are compared on various characteristics. From the likelihood ratio test, we
can see that the EFAST model represents the white matter data significantly
better (χ2(21) = 3632.586, p ă .001), and inspecting the SSABIC values (EFA
= 59120, EFAST = 55727) leads to the same conclusion. In addition, the CFI,
RMSEA, indicate better fit for the EFAST model, too.

Table 4.2 Comparing the fit of the EFAST and EFA models with 6 factors
for the white matter data, using a likelihood ratio test and several fit criteria.

CFI RMSEA SRMR Df χ2 ∆χ2 ∆Df Pr(ą χ2)
EFAST 0.899 0.081 0.205 603 3137.462
EFA 0.756 0.123 0.198 624 6770.048 3632.586 21 ă .001

The only index which indicates slightly poorer fit is the SRMR. The dif-
ference is very small in this case, but nonetheless it is relevant to show where
these differences lie. A visual representation of the root square residual (ob-
served - implied) correlations – which form the basis of the SRMR fit index –
can be found in Figure 4.16. The figure shows that EFAST is able to represent
the symmetry better: it has almost no residuals on the secondary diagonals.
The remaining residuals are very similar, though slightly higher, leading to a
higher SRMR.
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Figure 4.16 Visual representation of the root square residual (observed -
implied) correlations, which form the basis of the SRMR fit index. Num-
bers on the colour scale indicate root square residual correlation, darker blue
indicates larger residual.

4.4.3 Empirical example: Resting state Functional connectivity

4.4.3.1 Data description

Our previous examples correlation matrices capturing between- individual sim-
ilarities across regions. However, the same techniques can be implemented at
the within-subject level given suitable data. One such measure is functional
connectivity which reflects the temporal connectivity between regions during
rest or a given task, and captures the purported strength of interactions, or
communications, between regions (Van Den Heuvel & Pol, 2010). Here we use
functional connectivity matrices from 5 participants in the Cam-CAN study
measured during an eyes-closed resting state block. We focus on 90 cortical
and sub-cortical regions from the AAL-atlas (Tzourio-Mazoyer et al., 2002).
The methodology to compute the connectivity metrics is outlined in (Geerligs,
Tsvetanov, & Henson, 2017), and the data reported here have been used in
(Lehmann, Henson, Geerligs, & White, 2019).
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Figure 4.17 Correlation matrix for the first participant in the Cam-CAN
resting state functional connectivity dataset. Numbers on the colour scale
indicate the strength of the estimated correlation, with darker blue indicating
stronger positive correlations. Secondary diagonal lines are visible indicating
correlation due to contralateral homology.

4.4.3.2 Results

For this example, data from the first participant was used to perform the
model fit assessments. We performed a similar routine as with the previous
empirical datasets for determining the number of factors: we fit the EFAST
and EFA models for 2-16 factors and compare their information criteria. All of
the models converged, and the optimal model based on the BIC is a 13-factor
EFAST model. BIC was chosen as a criterion for the number of factors in
order to keep the analysis tractable – the other criteria indicated an optimum
beyond 16 factors.

The 13-factor EFAST model was then compared to the 13-factor EFA model
on various fit indices. The results of this comparison can be found in Table 4.3.
Across the board, the EFAST model has better fit, as the EFAST CFI, RM-
SEA, SRMR and χ2 fit indices outperform those for the EFA model, demon-
strating that accounting for the bilateral symmetry in dimension reduction
through factor analysis leads to better fitting model of the data.

This approach also allows for comparing the factor loadings for the dif-
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Table 4.3 Comparing the fit of the EFAST and EFA models with 13 factors
for the functional resting state data, using a likelihood ratio test and several
fit criteria.

CFI RMSEA SRMR Df χ2 ∆χ2 ∆Df Pr(ą χ2)
EFAST 0.836 0.093 0.253 2868 9350.278
EFA 0.774 0.108 0.272 2913 11828.126 2477.848 45 0.000

ferent participants. For illustration, the plot in Figure 4.18 shows the profile
of factor loadings for the first three factors (columns) across the five partic-
ipants (rows). These profile plots can be a starting point for comparison of
the connectivity structure across participants, where higher correlation among
participants means a more similar connectivity structure, while taking into ac-
count the symmetry in the brain. For example, for Factor 1, participant 3 has
a quite different functional connectivity factor loading profile than the other
participants.
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Figure 4.18 Comparison of factor loading profiles for the first three fac-
tors (columns) across five participants (rows). The left side of each subplot
corresponds to the left hemisphere, the right side corresponds to the right
hemisphere.

4.5 Model-based lateralization index
In the simulations, we showed how the EFAST approach yields a more veridical
representation of the factor structure than EFA. However, using EFAST yields
an additional benefit: our model allows for estimating the extent of symmetry
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in each ROI, while taking into account the overall factor structure. This enables
researchers to use this component of the analysis for further study. The (lack
of) symmetry may be of intrinsic interest, such as in language development
research (Schuler et al., 2018), intelligence in elderly (Moodie et al., 2019), and
age-related changes in cortical thickness asymmetry (Plessen et al., 2014). In
the efast package, we have implemented a specific form of lateralization which
is based on a variance decomposition in the ROIs. Our lateralization index
(LI) is a dissimilarity measure representing the proportion of residual variance
(given the trait factors) in an ROI that cannot be explained by symmetry. The
index value is 0 if the bilateral ROIs are fully symmetric (conditional on the
trait factors), and 1 if there is no symmetry:

LIi = 1 ´ cor(ulh
i , urh

i ) (4.1)

where ulh
i and urh

i are residuals given the trait factors of interest of the ith ROI
in the left and right hemisphere, respectively. The correlation cor(¨ , ¨) between
these residuals represents the amount of symmetry, so the LIi represents the
residual dissimilarity of the ith ROI in the two hemispheres after taking into
account the factor structure in the data. When LIi is 0, the ROIs are fully
symmetric given the traits, and a LIi of 1 indicates no symmetry. Note that
LIi can be larger than 1 if the residuals are negatively correlated.

The LI for each ROI in the grey matter volume example is shown in Fig-
ure 4.19. Here, we can see that there is high lateralization in the superior
temporal sulcus and medial orbitofrontal cortex, but high symmetry in the
lateral orbitofrontal cortex and the insula. In Figure 4.20, we additionally
show in the white matter example that LI can naturally be supplemented by
standard errors and confidence intervals. Thus, the EFAST procedure not only
improves the factor solution under plausible circumstances for such datasets,
but in doing so yields an intrinsically interesting metric of symmetry.

lateral medial

0.5

0.7

0.9

1.1
Lateralization

Figure 4.19 Amount of grey matter volume asymmetry per ROI. Dark blue
areas are highly symmetric given the previously estimated 6-factor solution,
and bright yellow areas are highly asymmetric. Such plots can be made and
compared for different groups and statistically investigated for differences in
symmetry for a common factor solution. A lateralization index (LI) of 0
means that the regions are fully symmetric conditional on the trait factors.
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Figure 4.20 White matter lateralization index for a selected set of regions
given the previously estimated 6-factor solution. Lower values means that
bilateral ROIs are more symmetric conditional on the trait factors, higher
values that they are less so. The line ranges indicate 95% confidence intervals,
computed as LI ˘ 1.96 ˆ SELI , where the standard error SELI is computed
using the delta method.

4.6 Summary and discussion
In this paper, we have developed and implemented EFAST, a method for per-
forming dimension reduction with residual structure. We show how this new
method outperforms standard EFA across three separate datasets, by taking
into account hemispheric symmetry in brain covariance data. We have argued
through both simulations and real-world data analysis that our method is an
improvement in the dimension reduction step of such high-dimensional, struc-
tured data, yielding a more veridical factor solution. Such a factor solution can
be the basis for further analysis, such as an extension of the factor model to
prediction of continuous phenotype variables such as intelligence scores, or the
comparison among different age groups. These extensions will be improved
by building on a factor solution which appropriately takes into account the
symmetry of the brain. Furthermore, we believe that many data reduction
problems in social, cognitive, and behavioural sciences have a similar struc-
ture: residual structure is known, but precise theory about the underlying
factor structure is not (Asparouhov & Muthén, 2009). As such, although we
focus on brain imaging data, our approach is likely more widely applicable.

Care is needed in the interpretation of the factor solution as underlying di-
mensions, as the empirical application has shown that the absolute level of fit
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for both the EFA and EFAST models is not optimal. In addition, estimation
of more complex factor models may lead to nonconvergence or inadmissible
solutions. Such problems would need to be further investigated, potentially
leading to more stable estimation, for example through a form of principal axis
factoring, or potentially through penalization of SEM (Jacobucci et al., 2019;
van Kesteren & Oberski, 2019). However, these limitations hold equally for
EFA, and when comparing both methods it is clear from the results in this
paper that the inclusion of structured residuals greatly improves the represen-
tation of the high-dimensional raw data by the low-dimensional factors. In
summary, this relatively simple but versatile extension of classical EFA may
be of considerable value to applied researchers with data that possess similar
qualities to those outlined above. We hope our tool will allow those researchers
to easily and flexibly specify and fit such models.

Note that we are not the first to suggest using structured residuals in EFA
to take into account prior knowledge about structure in the observed variables.
Adding covariances among residuals is a common method to take into account
features of the data-generating process (e.g., Cole et al., 2007), and this has
been possible in the context of EFA since the release of the ESEM capability
in MPlus (Asparouhov & Muthén, 2009) and in lavaan (Rosseel, 2019). In the
context of neuroscientific data, similar methods in accounting for structure in
dimension reduction have been researched by De Munck, Huizenga, Waldorp,
and Heethaar (2002) in source localization for EEG/MEG. Our goal for this
paper has been to provide a compelling argument for the use of such structured
residuals from the point of view of neuroscience, as well as a user-friendly, open-
source implementation of this method for dimension reduction in real-world
datasets.
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Chapter 5

Privacy-Preserving Generalized Linear Models

using Distributed Block Coordinate Descent

Van Kesteren, E. J., Sun, C., Oberski, D. L., Dumontier, M., & Ippel, L.
(2019, in preparation). Privacy-Preserving Generalized Linear Models using
Distributed Block Coordinate Descent. arXiv:1911.03183

Combining data from varied sources has considerable potential for
knowledge discovery: collaborating data parties can mine data in
an expanded feature space, allowing them to explore a larger range
of scientific questions. However, data sharing among different par-
ties is highly restricted by legal conditions, ethical concerns, and
/ or data volume. Fueled by these concerns, the fields of cryptog-
raphy and distributed learning have made great progress towards
privacy-preserving and distributed data mining. However, prac-
tical implementations have been hampered by the limited scope
or computational complexity of these methods. In this paper, we
greatly extend the range of analyses available for vertically parti-
tioned data, i.e., data collected by separate parties with different
features on the same subjects. To this end, we present a novel
approach for privacy-preserving generalized linear models, a fun-
damental and powerful framework underlying many prediction and
classification procedures. We base our method on a distributed
block coordinate descent algorithm to obtain parameter estimates,
and we develop an extension to compute accurate standard errors
without additional communication cost. We critically evaluate the
information transfer for semi-honest collaborators and show that
our protocol is secure against data reconstruction. Through both
simulated and real-world examples we illustrate the functionality of
our proposed algorithm. Without leaking information, our method
performs as well on vertically partitioned data as existing methods
on combined data – all within mere minutes of computation time.

EVK was the main author, created the software, and ran the experiments. CS wrote parts of
the introduction and related work, found and pre-processed datasets. DLO reviewed and created
the proof for the standard errors. MD provided feedback. LI supervised the writing process and
reviewed, improved the mathematical formulation, and aided in the experiments.
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We conclude that our method is a viable approach for vertically
partitioned data analysis with a wide range of real-world applica-
tions.

5.1 Introduction
With technological developments in computational power and storage capac-
ity, an increasing amount of data is collected and stored by a variety of data
parties (Kaisler, Armour, Espinosa, & Money, 2013). Over the past decades,
data mining has been successful in extracting information from such datasets,
but it is especially powerful when various data sources are combined: collab-
orating data parties can mine data in a larger feature space, allowing them
to discover knowledge beyond their individual potential. For example, in the
medical domain, personal health conditions are significantly affected not only
by genetic and biological factors, but also by individual behaviour and social
circumstances (World Health Organization, 2008); combining those sources has
the potential to improve analytical models for health outcomes (Ancker, Kim,
Zhang, Zhang, & Pathak, 2018; Kasthurirathne, Vest, Menachemi, Halverson,
& Grannis, 2017).

However, there is a pertinent obstacle to unlocking the potential of combin-
ing datasets: integrating various sources may reveal private information about
individual data subjects to the collaborating parties. Hence, data sharing is
highly restricted by legal and ethical concerns. This highlights the need for
privacy-preserving techniques which perform data mining tasks on multiple
sources without explicitly sharing their full data (e.g., Du, Han, & Chen, 2004;
Gambs, Kégl, & Aïmeur, 2007; Gascón et al., 2017; Karr, Lin, Sanil, & Reiter,
2009). In this paper, we develop a novel algorithm for performing generalized
linear modeling (GLM) in a privacy-preserving way in such a partitioned data
situation. GLM is a powerful statistical framework for prediction and classi-
fication and is at the basis of a wide range of analysis applications including
linear, count, and logistic regression (Dobson & Barnett, 2008; McCullagh &
Nelder, 1989).

This paper is organized as follows. In Section 5.2, related work is discussed
to contextualize our contribution. In Section 5.3, we introduce our proposed
method for GLM on vertically partitioned data. Next, we describe in detail
the privacy-preserving and information sharing characteristics of this protocol
in Section 5.4, and we analyze how the information transfer affects the ability
of the partner organisation to recover the collaborator’s data. In Section 5.5,
we benchmark our implementation of the protocol against full-data analysis
using Monte Carlo simulations and we illustrate the functionality of our im-
plementation using three different real-life data sets from the UCI Machine
Learning repository (Blake & Merz, 1998). Finally, we discuss the strengths
and limitations of our approach in Section 5.6 and we provide suggestions for
future research.

All of the methods described here are implemented in privreg, an open-

90



source software package for the R programming language (R Core Team, 2018).
This implementation includes encryption for all communication across parties
based on a pre-shared key, and includes a user-friendly interface based around
an object-oriented architecture. The package is available for installation from
https://github.com/vankesteren/privreg.

5.2 Related work

In practice, there are two main types of data partitioning (Vaidya & Clifton,
2005). Different data sources might collect the same features of different data
subjects, e.g., different hospitals collect the same type of information from their
own set of patients. This situation is referred to as horizontally partitioned
data. Alternatively, separate sources might collect different information from
the same data subjects, e.g., medical features by the hospital may be combined
with socioeconomic features from a government statistics department. This
situation is referred to as vertically partitioned data, which is the focus of the
current paper. There is also a third scenario, where data are both vertically
and horizontally partitioned, which may be referred to as hybrid partitioning.

Our aim is to analyze data which is vertically partitioned without leaking
raw data to the collaborating parties (Alice and Bob). In order to analyze such
data, either the dataset may be combined but hidden from the collaborating
parties, or the analytical procedure should prevent leaking of information. The
former relies on the inclusion of an ‘uninterested’ or trusted third party (TTP):
Each party sends their raw data encrypted to the TTP, who then performs the
required analyses on the combined data sets. Afterwards, the TTP returns
the results to all data parties and the raw data of Alice stays hidden to Bob.
However, this solution requires all parties to fully trust the TTP, which might
not be possible in the face of restrictive legislation or sensitive data.

There is another class of methods which do not rely on a TTP, instead us-
ing cryptography to perform data mining tasks on vertically partitioned data.
These methods focus on preventing information leakage by creating protocols
which hide the raw data from the collaborator (e.g., for the construction of
decision trees, Agrawal & Srikant, 2000). In this class of methods Du and
Atallah (2001) and Du et al. (2004) investigated various protocols for secure
matrix computation for linear least squares regression and classification prob-
lems. Several other authors used and extended more general secure multiparty
computation protocols (e.g., the garbled circuit protocol; Yao, 1986) to per-
form regression on vertically partitioned data (Amirbekyan & Estivill-Castro,
2007; Bloom, 2019; Fang, Zhou, & Yang, 2013; Gascón et al., 2016, 2017; Niko-
laenko et al., 2013; Slavkovic, Nardi, & Tibbits, 2007). While their use of
these general protocols yields certain privacy guarantees, their practical im-
plementations and use are hindered by requiring semi-trusted third parties,
intermediate data sharing, computational complexity, or a limitation to the
linear regression situation.

Another line of research leverages the privacy-preserving properties of algo-
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rithms from federated or distributed learning, a field researching data mining on
separated datasets (Dobriban & Sheng, 2018; T. Li, Sahu, Talwalkar, & Smith,
2019). A canonical example is by Sanil, Karr, Lin, and Reiter (2004), who de-
veloped a method to compute linear regression coefficients iteratively based
on an algorithm by Powell (1964). Other authors leverage specific distributed
learning algorithms to implement statistical learning for vertically partitioned
data (Vaidya & Clifton, 2002, 2003, 2005; Vaidya, Yu, & Jiang, 2008). Our
method is closely related to this branch of research. Unlike existing regression
methods from the TTP or cryptography fields, our method does not make use
of a trust assumption or complex cryptographic protocols, but it is naturally
secure due to its reliance on a federated learning algorithm which never moves
the data from its original location. In the next section, we explain the concept
and implementation behind our proposed privacy-preserving GLM technique.

5.3 Proposed method

Our proposed method uses block coordinate descent (BCD) to estimate gener-
alized linear models (GLM) in a situation where data is vertically partitioned
across two or more parties. In BCD, parameters are iteratively updated for
each block of features, cycling over the blocks until an optimum is found (Hastie
et al., 2015). This optimization algorithm can be seen as a form of distributed
learning (Bertsekas & Tsitsiklis, 1989; Richtárik & Takáč, 2016) which we ex-
ploit as a privacy-preserving method because the features remain in different
locations. Only linear predictions need to be transferred across the feature
blocks – the full data is never shared.

Note that for the remainder of the paper, we assume that the records of
the data subjects are in the same order across databases, in line with Gascón
et al. (2017). Furthermore, we only consider the situation where the target
attribute is available to both parties (Sanil et al., 2004). In addition, we follow
the tradition in the existing literature (e.g., Karr, 2010; Vaidya et al., 2008)
to assume semi-honest adversaries: data parties will follow the protocol as
described, but will still attempt to learn as much information as possible from
other parties. This contrasts with malicious adversaries that can arbitrarily
deviate from the protocol (Lindell, 2005).

In this section, we build up the BCD algorithm from the simpler case of
linear regression before extending it to full GLM. Therefore, we first explain
the necessary background on linear regression, as well as the notation used
throughout this paper. Then, coordinate descent estimation is introduced as
a means to estimate its maximum likelihood coefficients. In Section 5.3.3,
this algorithm is then extended to accommodate a vertically partitioned data
structure, and in Section 5.3.4 we generalize it to different outcome families
in order to estimate GLMs. Finally, we develop a novel method to obtain
standard errors within this framework.
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5.3.1 Background

We consider the centered design matrix with features X P RNˆP and the
centered target variable y P RNˆ1, where N is the sample size, or number
of observations, and P is the number of features. The pth column in X is
represented as xp. The columns in X excluding the pth are denoted as X-p.

The basic regression model is then as follows:

y = Xβ + ϵ (5.1)

where β P RP , ϵ „ N (0, σ2I), and ϵ K X. The well-known closed-form
maximum likelihood estimator of the P regression coefficients β in this model
is:

β̂ = (XTX)´1XTy (5.2)

We further define the vector of predicted values as ŷ = Xβ̂ and the vector of
residuals as ϵ̂ = y ´ ŷ.

5.3.2 Cyclic coordinate descent estimation

When instead of the full design matrix X we consider only the pth variable,
the estimator in Equation 5.1 yields the marginal regression coefficient. Thus,
by simplifying Equation 5.1 to the univariate case, the marginal coefficient for
the pth variable β˚

p is estimated as

β̂˚
p =

xxp,yy

xxp ,xpy
=

cov(xp ,y)

var(xp)
(5.3)

where x¨ , ¨y indicates the inner product of two vectors. The covariance/variance
notation holds because we assume a centered design matrix X and outcome
variable y.

If xp covaries with any of the predictors in X-p, the marginal coefficient β˚
p

is different from the conditional coefficient βp. The estimate of this coefficient
is an element of β̂ in Equation 5.1, but it can equivalently be estimated in a
coordinate-wise, univariate manner (Hastie et al., 2015) as follows:

β̂p =
xxp, ϵ̂-py

xxp ,xpy
=

xxp ,y ´ X-pβ̂-py

xxp ,xpy
=

xxp ,yy

xxp ,xpy
´

xxp ,X-pβ̂-py

xxp ,xpy
(5.4)

The residual ϵ̂-p = y ´ X-pβ̂-p is the residual with respect to the vari-
ables excluding xp, evaluated at the maximum likelihood (ML) estimates of β.
Equation 5.4 states that the conditional regression coefficient can be obtained
by computing the marginal regression coefficient of ϵ̂-p on xp. This relation
holds because ϵ̂-p represents the part of the outcome variable unrelated to X-p
– by definition, ϵ̂-p K X-p. In addition, the last part of Equation 5.4 shows
that the marginal and conditional estimate of the pth regression coefficient are
equal if xp and X-p do not covary, because the last term drops out.
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The coordinate-wise estimation of β̂p (Equation 5.4) requires the maximum
likelihood estimates β̂-p of the remaining variables to be known. However,
when estimation of β̂ is the goal, these estimates are not available. This can
be solved by an iterative updating procedure of the β̂ estimates:

Algorithm 1: Cyclic coordinate descent
(Hastie et al., 2015)

1. Initialize β̂ Ð β̂
˚ (marginal coefficients)

2. For each p P P :

(a) ϵ̂-p Ð y ´ X-pβ̂-p

(b) β̂p Ð xxp , ϵ̂-py / xxp ,xpy

3. Repeat step (2.) for R iterations until convergence (i.e.,
the change in parameter estimates over iterations be-
comes negligible)

An advantage of this method is that it does not require storing the full
P ˆ P covariance matrix in memory, and this matrix does not need to be
inverted – an O(P 3) operation. This advantage becomes especially relevant
as P grows (Hastie et al., 2015). Another advantage is that this estimation
method allows for regularization to be implemented naturally. For example,
the ℓ1 penalized parameters can be computed by soft-thresholding xxp , ϵ̂-py in
each iteration. This is the approach taken by the popular regularized regression
package glmnet (Friedman et al., 2010).

A graphical display of the behaviour of the estimated parameters during the
cyclical coordinate descent procedure is shown in panel A of Figure 5.1. Here, 9
covarying features X were generated from a multivariate normal distribution.
Then random parameter values β and random normal errors ϵ were created
and used to generate the target variable y = Xβ + ϵ.
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Figure 5.1 Panel A: Coordinate descent paths for linear regression with 9
covarying features, simulated from a multivariate normal distribution. The
parameter lines converge from the marginal ML estimates (left) to the con-
ditional ML estimates (right). Note that the x-axis is on a logarithmic scale
and convergence happens around iteration 1000. Panel B: Block coordinate
descent path for regression with 9 covarying predictors, applied to the same
simulated dataset. There are two blocks, indicated by the line types. Note
that convergence happens before iteration 500, faster than the cyclic coordi-
nate descent algorithm.

Next, we show how coordinate descent generalizes to blocks of variables, and
how it may be used to estimate linear regression coefficients in the vertically
partitioned data scenario described above.

5.3.3 Securely estimating coefficients for linear regression

In this section, we develop the framework for analysing vertically partitioned
data. Our key contribution is the combination of two observations:

1. Coordinate descent estimation works the same for single features as well
as for blocks of features – resulting in a variant called block coordinate
descent (BCD; Hastie et al., 2015).

2. Vertically partitioned data is blocked data – the features held by Alice
can be considered the first block, and those held by Bob the second block.

Following these two observations, Algorithm 2 below thus provides an iter-
ative estimator for the parameters of Alice (βa) and those of Bob (βb) through
sharing of predictions. Predictions from Alice are written as ŷa = Xaβ̂a, and
the working residual with respect to Alice, i.e., the part of y not related to the
features in Xa is then ϵ̂a = y ´ ŷa.
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Algorithm 2: Secure block coordinate descent

1. Initialize ŷb Ð 0

2. Alice:

(a) ϵ̂b Ð y ´ ŷb

(b) β̂a Ð (XT
aXa)

´1XT
a ϵ̂b

(c) ŷa Ð Xaβ̂a

(d) Send ŷa to Bob

3. Bob:

(a) ϵ̂a Ð y ´ ŷa

(b) β̂b Ð (XT
b Xb)

´1XT
b ϵ̂a

(c) ŷb Ð Xbβ̂b

(d) Send ŷb to Alice

4. Repeat step (2.) and (3.) for R iterations until conver-
gence.

Upon convergence, the concatenated parameter estimates vector (β̂a, β̂b) is
equal (up to a small predetermined tolerance value) to the parameter estimates
vector that would be obtained using the standard maximum likelihood estima-
tor in the combined data set (Tseng, 2001). It follows that the element-wise
summed prediction ŷa+ ŷb is equal to the prediction ŷ that would be obtained
from the combined dataset. Thus, prediction can be done without sharing the
parameter estimates. Further analysis of the privacy-preserving properties of
this procedure is discussed in Section 5.4.

In panel B of Figure 5.1 we illustrate BCD, applied to the same data set as
in panel A. However, instead of P blocks of 1 feature each, now there are two
blocks with 5 and 4 features. BCD reaches convergence with fewer iterations
than the cyclic version, because it uses more information about the covariance
between the features. In general, convergence is obtained faster with fewer
blocks, and with less covariance between blocks (Richtárik & Takáč, 2016). In
the case of orthogonal blocks, only a single iteration is needed for convergence
as the marginal estimates equal the conditional estimates. X. Li, Zhao, Arora,
Liu, and Hong (2017, Theorem 8) derived a general result about the iteration
complexity of BCD, showing that for smooth convex losses such as the GLM
log-likelihood, the number of iterations required for convergence is linear in
the number of features P .

In the next section, we show how our BCD approach may be modified to
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estimate generalized linear model coefficients for a wide range of applications.
Then, we provide a way to estimate standard errors within this framework.

5.3.4 Extension to generalized linear models

Extending this procedure to generalized linear models (GLM) requires a slightly
different estimation approach: whereas the parameter estimates of full-data
linear regression can be found analytically (Equation 5.2), GLM requires an
iteratively reweighted least squares (IRLS) procedure (Green, 1984; Wedder-
burn, 1974). In each iteration i in full-data GLM, the estimates are computed
as follows:

β̂
(i+1)

= (XTW (i)X)´1XTW (i)z(i) (5.5)

Here, W is a diagonal weights matrix and z is a transformation of the
target variable called the working response, computed as

z(i) = η(i) + (y ´ µ(i))

(
dµ(i)

dη(i)

)
(5.6)

where η(i) = Xβ̂
(i) and µ(i) is a function of η(i) as predefined in the link

function (e.g., logit link for logistic regression; McCullagh & Nelder, 1989).
From this working response, a working residual needs to be obtained which
acts like ϵ̂-p in Equation 5.4: a response vector orthogonal to the predictors
excluding feature p. We define this working residual as follows (Friedman et
al., 2010):

ϵ̂-p = z ´ X-pβ̂-p (5.7)

Using this working residual and the usual weights matrix from GLM, the coor-
dinate descent algorithm proceeds in a similar fashion to that of linear regres-
sion (Algorithm 1). Just as with coordinate descent for linear regression, this
algorithm readily extends to a blockwise procedure, meaning it can be adapted
for the private regression method as discussed in Section 5.3.3.

5.3.5 Computing standard errors

A key component of inference in regression models is obtaining a measure
of sampling uncertainty about the obtained estimates, usually standard errors.
Under the assumptions of maximum likelihood theory, the limiting distribution
of the deviation of the parameter estimates is the following:

?
N(β̂N ´ β)

d
ÝÑ N (0,Σβ) (5.8)

where Σβ is the asymptotic variance-covariance matrix of β̂:

Σβ = var(β̂) = σ2(XTX)´1 (5.9)
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In linear regression, σ̂2 = xϵ̂ , ϵ̂y/(N ´ P ) and the standard errors of β̂ can be
computed as

ŝeβ̂ =

b

diag(σ̂2(XTX)´1) (5.10)

Thus, to compute an estimate of the variance-covariance matrix of the
sampling distribution of the β̂ parameters, the inverse covariance matrix of
the features is needed. However, when the data is vertically partitioned, part
of this covariance matrix is missing for each party. As a result, computing
standard errors using the above information matrix approach is impossible for
vertically partitioned data without sharing the features.

We present a novel approach to compute standard errors of the regression
coefficient through creating a substitute V b of the partner’s data matrix Xb.
This substitute is then used as the partner’s data in the computation of the
asymptotic variance-covariance matrix as in Equation 5.9.

The substitute V b needs to contain the same information for the parameters
of Alice as the real data. This information is in the predictions received from
Bob – the parameter estimates of Alice depend only on Bob’s linear predictions.
Consider the inputs and outputs of Bob, as seen by Alice: as the coordinate
descent algorithm progresses along the R iterations, Alice can create two NˆR
matrices, Êa and Ŷ b

Êa =
[
ϵ̂(1)a , . . . , ϵ̂(R)

a

]
Ŷ b =

[
ŷ
(1)
b , . . . , ŷ

(R)
b

] (5.11)

These are the input and output matrices, respectively, from the projection
that Bob applies in each iteration. This projection is commonly known as the
hat matrix Hb P RNˆN . The hat matrix relates to Bob’s data matrix Xb as
follows:

Ŷ b = HbÊa

Ŷ b = Xb(X
T
b Xb)

´1XT
b Êa

Ŷ b = XbX
+
b Êa

(5.12)

where X+
b indicates the Moore-Penrose generalized inverse of Xb (Petersen &

Pedersen, 2012).
Alice can compute the projection that Bob applies in each iteration Hb as

follows:
Ĥb = Ŷ bÊ

+

a (5.13)

Across iterations, this minimum-norm solution Ĥb performs the same pro-
jection as the true hat matrix of Bob. Using this projection, Alice can then
create the data substitute V b P RNˆPb . For this, V b should have the property
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Ĥb = V bV
+
b . Such a V b has the same effect on the coefficient estimates of

Alice that Xb does, because it generates the same predictions that Bob does:

Ŷ b = ĤbÊa

Ŷ b = V bV
+
b Êa

(5.14)

There is no unique solution to decomposing Ĥb into an N ˆ P matrix V b

and its pseudoinverse. However, a numerically convenient V b solution can be
found as the first Pb eigenvectors of Ĥb. This is a convenient choice, because
the columns of V b are then orthogonal, meaning they also have the following
property: V +

b = (V T
b V b)

´1V T
b = I´1V T

b = V T
b . As follows from Equations

5.12 and 5.14, the V b matrix relates to Xb by means of an unknown positive
definite rotation matrix V b = RXb (Pavel, 2019).

By leveraging this similarity of V b to Xb, Alice can create an augmented
data matrix of the following form: Za = [Xa,V b]. The augmented data
matrix replaces the full data matrix in the computation of the asymptotic
covariance matrix: Σ

(a)
β = σ2(ZT

aZa)
´1. The partition of Σ

(a)
β belonging to

βa is then identical to its counterpart from the full data asymptotic covariance
matrix Σβ (for proof see Appendix C.1). The square root of its diagonal
elements are thus the correct standard errors that would be obtained had the
full data been available.

Alternative standard error procedures are available, e.g., profile likelihood
methods or bootstrapping, but those require additional iterations of the main
block coordinate descent algorithm. This yields additional information leakage
and dramatically increases time requirements. Conversely, in the novel proce-
dure we suggest here, both parties efficiently leverage the information in the
existing iterations to compute standard errors without additional communica-
tion.

5.4 Privacy analysis for block coordinate descent
In this section, we analyze the information transfer within our protocol for
privacy-preserving regression based on block coordinate descent. In line with
previous work on this topic (e.g. Gambs et al., 2007; Gascón et al., 2017;
Vaidya & Clifton, 2003, 2005; Vaidya et al., 2008), we take the viewpoint of
semi-honest parties: Alice and Bob follow the protocol accurately, though they
may be curious and aim to recover the other party’s data. In this section,
we aim to identify how well Bob can approximate Alice’s data using a model
inversion attack (Fredrikson, Jha, & Ristenpart, 2015; Wang, Si, & Wu, 2015).

5.4.1 Information transfer in vertically partitioned regression

Information about features cannot only leak through dataset sharing, but also
via sharing statistics based on this data. For example, a simple method for
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regression without explicitly sharing the full dataset is that by Karr et al.
(2009), who compute the covariance matrix of X using secure inner-product
methods and share it between Alice and Bob. This covariance matrix allows
even a semi-honest Alice to (a) know how many features are used by Bob and
– in the case of categorical predictors – know how many categories there are,
(b) predict the values of the features held by Bob based on the values of the
features held by Alice, (c) compute standard errors around this prediction,
and (d) compute an R2 value for this prediction. In other words, in a shared
covariance matrix setting Alice can know up to a certain degree the values on
each of Bob’s features for each row in the dataset, and Alice can know how
good this prediction is. Moreover, each additional feature entered by Alice
improves the prediction of features at Bob by definition.

Thus, sharing the full covariance matrix is undesirable for privacy-
preserving regression. Newer methods (e.g., Du et al., 2004; Gascón et al.,
2017) result in additive shares of cov(X) at Alice and Bob, without either of
them possessing the full covariance matrix. Afterwards, separate secure multi-
party matrix inversion protocols or linear system solvers are used to compute
the regression parameters according to Equation 5.2. This generally requires
complex protocols involving multiple parties, but has been argued to be a se-
cure procedure for obtaining parameter estimates for linear regression with
vertically partitioned data. In these protocols, it is clear that information
transfer does occur (because the full-data estimates are obtained) but its ex-
tent is not made explicit: it is unclear how the additive shares of the covariance
matrix (the “statistics”) relate to the collaborator’s data – and thus it is unclear
whether that data can be reconstructed.

Conversely, in our protocol the covariance matrix of the combined data is
never explicitly computed. Our method uses a different “statistic”: predictions
ŷ over R iterations. Each of the R predictions are computed as follows by Alice:

ŷ(r)
a = Xaβ̂

(r)

a (5.15)

This prediction vector is then sent to Bob: the main information transfer.
In this protocol, how this information transfer relates to Alice’s data is thus
explicit. As a result, clear conclusions can be made as to the potential for data
recovery.

In the case where Alice enters only a single continuous feature in the analy-
sis protocol, the information contained in ŷa is sufficient for Bob to reproduce
the values of this feature up to a multiplicative constant: ŷa = xa ¨ β̂a. With
more than one feature per party, β̂a becomes a vector, meaning the problem of
recovering the values of any feature at Alice is underidentified. Moreover, if the
protocol is followed precisely, Bob does not know the number of features P en-
tered into the model, meaning there is additional uncertainty about the values
of Xa on the part of Bob. In its most basic form, the protocol is therefore fully
secure for semi-honest parties against reconstruction of the privacy-sensitive
data matrices.
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5.4.2 Data reconstruction using shared metadata

In practice, there are many situations where the basic algorithm does not
suffice and metadata about Xa should be shared with Bob. For example, to
circumvent multicollinearity and non-convergence, none of the features entered
into the model by Alice should be entered by Bob. Moreover, when distributing
the model results is a goal of the analysis, it is relevant to investigate how
sharing parameter estimates in addition to the predictions that are already
shared leads to information transfer about the original data.

In our protocol, Alice sends R predictions to Bob. These individual pre-
dictions can be appended in a columnwise fashion to create an N ˆ R matrix
Ŷ a = [ŷ(1)

a , . . . , ŷ(R)
a ]. Each prediction has an associated set of parameter

estimates known only by Alice β̂
(r)

a , which can be combined in a similar way
to create the matrix B̂a P RPˆR. These relate to the data matrix at Alice as
follows:

Ŷ a = XaB̂a (5.16)

In our protocol, all of Ŷ a is shared with Bob, and only the Rth column of
B̂a – the final model result – is shared. Using these estimates, Bob can make
a rank-1 minimum-norm approximation of the data held by Alice:

X̂
(1)

a = ŷ(R)
a β̂

(R)+

a (5.17)

where + indicates the Moore-Penrose inverse (Petersen & Pedersen, 2012).
We show empirically in Appendix C.2 that using this method with one set
of shared parameter estimates reveals a proportion 1/Pa of the variance in
the data to Bob. Only the combination of predictions and their associated
parameter values allows (partial) model inversion and reconstruction of the
partner’s data.

Furthermore, as presented in Section 5.3.5, the predictions sent to and
received from Alice can be used to create a minimum-norm approximation
of the hat matrix of Alice – another statistic which is shared in our protocol.
This hat matrix is shown in Appendix C.1 to not contain information about the
features of Alice directly, but only about a rotation of this data such that the
parameter estimates of Bob are adequately adjusted towards the conditional
estimates.

In conclusion, the protocol is secure against reconstruction of the data in
the case of semi-honest parties, and sharing of the final parameter estimates β̂a

reveals a proportion 1/Pa of the variance in the data to the other data party.

5.4.3 Further privacy considerations

Purposeful attacks to recover data in the case of adversarial collaborations
have not been analyzed. It is possible to design such an attack, but it is also
possible to design safeguards against such attacks in the implementation of

101



the protocol, for example based on the expected smoothness of the regression
paths over iterations. We leave this analysis as a topic for further research.

In addition, because of the explicit link between the shared statistics
and the original data, it is possible to limit the information shared with the
collaborator in several ways. For example, in each iteration Alice may add
noise to the computed parameter estimates or to the predictions sent to Bob –
a technique from the differential privacy literature (Dwork, McSherry, Nissim,
& Smith, 2006). Another method is to put an upper bound on the number of
iterations based on the number of features in the data. This has two effects:
(a) it shrinks (regularizes) the parameter estimates towards the marginal
estimates and (b) it creates an upper bound ε on the information shared,
depending on the allowed number of iterations.

In the next section, we show how our implementation of the BCD with ver-
tically partitioned data performs in comparison to full-data generalized linear
modeling (GLM) in simulated data as well as three real-world datasets.

5.5 Experiments
Our implementation of the BCD algorithm for vertically partitioned data is
provided as an R package at https://github.com/vankesteren/privreg. Here,
we use this implementation (version 0.9.5) to estimate models on both simu-
lated data (Section 5.5.1) and real-world data with multiple parties from the
UCI data repository (Section 5.5.2). Reproducible code for this section is avail-
able in the supplementary material to this paper.

5.5.1 Simulated data

The goal of this section is to compare our proposed privacy-preserving re-
gression method to a benchmark method under controlled conditions. The
benchmark method for these experiments is linear and logistic regression with
a complete dataset, since the optimum privacy-preserving method would at-
tain the same results with vertically partitioned data. For this section, data
with multiple features and one target were simulated in the R programming
language (R Core Team, 2018), with the following manipulations:

Target Either a normally distributed or a binomial target vari-
able. In the case of the normal target, the R2 was set
to 0.5.

Dimensionality The total number of features was either 10, 50, or 100.
Covariance The covariance matrix of the features was had 1 on the

diagonal and either 0.1 (low covariance) or 0.5 (high
covariance) on all off-diagonal elements.

For each condition, 100 datasets were randomly generated. For the privacy-
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preserving regression method, the generated features were then equally dis-
tributed among Alice and Bob, after which the estimation was started. As
a baseline comparison, a generalized linear model was estimated on the full
dataset with all the features using the glm() function from the base R stats
package. The exact data-generating mechanism, as well as the estimation
method and hyperparameters can be found in the supplementary material.

The empirical convergence rates for the privacy-preserving regression
method are shown in Figure 5.2. As expected from the work of X. Li et al.
(2017), the number of iterations required increases linearly with the number of
features. In addition, the high covariance leads to slower convergence due to
the conditional estimates lying further away from the marginal estimates. As
mentioned in Section 5.3.3, with no covariance the number of iterations would
be 1.

●
●

●

●

●
●

●

●

gaussian binomial

0 50 100 150 200 0 50 100 150 200

0

500

1000

1500

Number of features

Ite
ra

tio
ns

Feature
covariance

● low
high

Figure 5.2 Observed amount of iterations required for convergence is ap-
proximately linear in the number of features and increases as there is more
covariance between the features. Error bars indicate 95% simulation per-
centile intervals.

The obtained parameter estimates (β̂) of our method are equal to those
found by the baseline comparison method in all simulated conditions, up to a
computational tolerance in the convergence of the estimation algorithm (Figure
5.3). This lack of relative bias indicates that the proposed privacy-preserving
regression approach performs as well as full-data generalized linear models, at
least for the extent of these simulations.
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Figure 5.3 The parameter bias relative to the baseline GLM method is
negligible for any number of features and feature covariance strength. Note
the small y-axis range.

Standard errors indicate uncertainty in the dataset around the coefficient
values, and they are the basis for statistical significance tests. Figure 5.4 shows
the bias in the standard errors relative to the baseline GLM method for the
different conditions. The figure shows that variation of this bias over different
datasets increases with the number of features (larger error bars). In addition,
there seems to be a very slight relative overestimation of the standard errors
on average. This is due to slightly different convergence criteria and tolerances
for both methods, which propagates through the standard error procedure
(Section 5.3.5). Despite this, the standard error bias is overall small (ă 3%).
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Figure 5.4 Standard error bias in percentage relative to the baseline GLM
method. Variation across datasets increases with the number of features, and
there is a very slight trend (ă 1%) towards overestimation of the standard
error for larger datasets.

In conclusion, the simulations have shown that privacy-preserving regres-
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sion using block coordinate descent on vertically partitioned data has equal
performance to established regression methods on full data. However, in this
section the data has been simulated to behave according to specification. In the
next section, we compare the performance of these two methods on real-world
datasets.

5.5.2 UCI datasets

In this section, we tested our proposed method on three different real-life data
sets from the UCI (University of California at Irvine) Machine Learning repos-
itory (Blake & Merz, 1998). The datasets were chosen because they can be
naturally partitioned into two sources, and their size and targets are different
(Table 5.1). As before, the full preprocessing and analysis code for this section
is available in the supplementary materials. Analyses were run on two sepa-
rate computers (an Intel Core i7-8750H at 2.20 GHz and an Intel Xeon E5-2650
v4 at 2.20GHz) connected via a gigabit Ethernet connection on a university
network.

Dataset Features Instances Task Parties
Forest fire 13 517 Regression Weather & Fire dept.
HCC 49 165 Classification Lab & Clinic
Diabetes 43 15 000 Classification Clinic & Pharmacy

Table 5.1 Properties of the datasets used from the UCI machine learning
repository after dataset cleaning and pre-processing. Code can be found in
the supplementary materials.

5.5.2.1 Forest fires data

The forest fire data comes from the Montesinho natural park in Portugal
(Cortez & Morais, 2007). It contains several weather observations by a me-
teorological station (e.g. wind speed, temperature, relative humidity, etc) as
well as fire department risk assessments. In this dataset, the target is to pre-
dict the area of forest burned by a particular fire using the features from the
aforementioned parties.

We performed linear regression where the target was log-transformed to
normalize the residuals. Continuous features were standardized before they
were entered into the analysis. The analysis took 450 BCD iterations in the
privacy-preserving regression case. Including encryption and networking over-
head, estimation took 14.51 seconds and computing standard errors took 0.61
seconds. Figure 5.5 shows that the coefficients and their 95% confidence inter-
vals are equal for the full-data analysis and the privacy-preserving procedure.
Several months show a significant positive effect on the log-area, meaning that
– conditional on the ratings of the fire department – fires in these months (e.g.,
August and December) burn larger areas of forest.
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Figure 5.5 The coefficients and standard errors for the forest fire analysis
are exactly the same for the GLM and our privacy-preserving regression es-
timation methods. The shading indicates data partitioning into the weather
service (light) and fire department (dark).

5.5.2.2 Hepatocellular carcinoma data

This dataset was collected by Coimbra’s Hospital and University Centre in
Portugal for studying an epithelial cell cancer of the liver called hepatocellular
carcinoma (HCC) (Santos, Abreu, García-Laencina, Simão, & Carvalho, 2015).
It contains heterogeneous data on demographics, risk factors, laboratory and
overall survival features from HCC patients. The goal of the analysis is to use
lab results for a tissue sample as well as clinical data for the patient to predict
survival after diagnosis. Since survival is a binary target, a binomial family
GLM (logistic regression) was performed. For this analysis, continuous fea-
tures were standardized before the analysis, which improved the convergence
characteristics. The privacy-preserving GLM converged in 1636 iterations. In-
cluding encryption and networking overhead, estimation took 3 minutes and
16 seconds and computing standard errors took 0.63 seconds.

The results of the analysis (Figure 5.6) show that the estimates are exactly
equal across the full-data and the privacy-preserving analyses, meaning survival
probability predictions for new incoming patients based on these models will
be the same. Despite slight deviations in the width of the confidence intervals,
conclusions about the effects of the features on survival are also the same in
this dataset.
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Figure 5.6 The coefficients and standard errors for the carcinoma analysis
are very similar for the GLM and our privacy-preserving regression estimation
methods. The shading indicates data partitioning into the lab results (light)
and clinic (dark).

5.5.2.3 Diabetes

The diabetes dataset is an extract representing 10 years (1999-2008) of clinical
diabetes care at 130 hospitals and integrated delivery networks throughout the
United States (Strack et al., 2014). It is a large and also heterogeneous data
set including encounter data (emergency, outpatient, and inpatient), provider
speciality, demographics, laboratory data, pharmacy data, in-hospital mortal-
ity, and hospital characteristics. In this dataset, we predict readmission to the
hospital using both administrative features and pharmaceutical features. To
keep the computation of the standard errors for this analysis possible, 15000
patients were randomly selected from the dataset. Features were re-coded
where necessary, and categorical features with only a single category in the
sample were excluded from the analysis. The full pre-processing pipeline can
be found in the supplementary material.

Since readmission is a binary target, a binomial family GLM (logistic re-
gression) was performed. The diabetes data analysis required 284 iterations
of the BCD algorithm. Including encryption and networking overhead, esti-
mation took 1 minute and 37 seconds and computing standard errors took 42
seconds. This analysis is particularly interesting with respect to the effect of
insulin (insulinYes) on the readmission probability. In the analysis of only
the medication data, insulin has a significant positive effect on readmission
(OR = 1.20, p ă .001), whereas conditional on the administrative data, insulin
significantly reduces the readmission probability (OR = 0.88, p ă .001). This
is a strong argument for including the data of both parties in the analysis.
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Figure 5.7 The coefficients and standard errors for the diabetes analysis are
exactly the same for the GLM and our privacy-preserving regression estima-
tion methods. The shading indicates data partitioning into the clinical data
(light) and pharmaceutical data (dark).

In this section, we have shown that privacy-preserving regression using
block coordinate descent is not only a theoretical possibility, but also a viable
implementation of GLM for analyzing data with varied characteristics – both
in simulated data under controlled conditions (Section 5.5.1) and in real-world
prediction and analysis problems with various targets (Section 5.5.2). The
time constraints on the real-world analyses are manageable, with all example
analyses converging in under 4 minutes. We have shown that the parameter
estimates exactly match those of the existing reference methods, and that our
novel estimation method for the standard errors generally agrees with its full-
data counterpart – and where it did not the difference was so small that it lead
to the same conclusions in the analysis.

5.6 Discussion
In this paper, we have argued that block coordinate descent is a general method
for estimating conditional parts of a generalized linear model (GLM) in a verti-
cally partitioned data situation. Using this approach, two or more data parties
can collaboratively estimate a GLM without sharing their features. This is
useful when the features are not allowed to be shared, for example when there
are privacy issues.

Our method falls within the category of federated learning algorithms. This
means it can be implemented for situations when data mining is to be per-
formed over remote devices or siloed data centers (T. Li et al., 2019), where
aggregating the data tables is prohibitively expensive in terms of time, compu-
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tation, or storage costs. This work aligns with several recent contributions that
seek to exploit the privacy-preserving aspects of federated learning algorithms
(see, e.g., Bonawitz et al., 2016; Geyer, Klein, & Nabi, 2017).

Due to the accessibility of our protocol and its similarity to existing regres-
sion estimation methods, extensions are relatively simple to implement. First
and foremost, our framework can be extended to multiple parties as coordi-
nate descent naturally extends to multiple blocks. In addition, our algorithm
could include penalties for regularized estimation of the regression parameters
through thresholding (Friedman et al., 2010). Through further research into
combining coordinate descent with missing data methods such as full informa-
tion maximum likelihood (Enders, 2001), our protocol could even be extended
for a hybrid partitioning situation where data is both horizontally and verti-
cally partitioned.

Our novel approach is a natural modification of the familiar linear modeling
framework – without changes in the assumptions. We argue that our protocol
restricts statistical information sharing as much as possible, while being explicit
in how the shared information relates to the original data. Because of this, data
parties know how much information they share, and the protocol could even
incorporate methods from the differential privacy literature – such as additive
noise or early stopping – to put a restriction on the amount of information
shared with the partner institution (Dwork et al., 2006).

The main tradeoff of this flexibility compared to existing methods is rel-
atively high communication cost: each iteration requires N prediction values
to be sent to the partner institution. In addition, like other methods for this
situation the block coordinate descent assumes (probabilistic) linkage of the
individual records – both parties need to have their records in the same order.
Lastly, this method is possible only when the target can be shared, although
in absence of a shareable target collaborators could still perform some form
of transfer learning, e.g., by predicting a shareable feature related to the true
target.

Considering the prospect of these extensions and the availability of an ac-
cessible open-source implementation, we believe the proposed block coordinate
descent protocol can be a springboard for future developments in the privacy-
preserving data mining field.
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Chapter 6

Fair inference on error-prone outcomes

Boeschoten, L.1, van Kesteren, E. J.1, Bagheri, A., & Oberski, D. L. (2020,
accepted). Fair inference on error-prone outcomes. ECAI conference 2020
workshop: Artificial Intelligence for a Fair, Just and Equitable World.
arXiv:2003.07621.

Fair inference in supervised learning is an important and active
area of research, yielding a range of useful methods to assess and
account for fairness criteria when predicting ground truth targets.
As shown in recent work, however, when target labels are error
prone, potential prediction unfairness can arise from measurement
error. In this paper, we show that, when an error-prone proxy tar-
get is used, existing methods to assess and calibrate fairness criteria
do not extend to the true target variable of interest. To remedy this
problem, we suggest a framework resulting from the combination
of two existing literatures: fair ML methods, such as those found
in the counterfactual fairness literature on the one hand, and, on
the other, measurement models found in the statistical literature.
We discuss these approaches and their connection resulting in our
framework. In a healthcare decision problem, we find that using
a latent variable model to account for measurement error removes
the unfairness detected previously.

6.1 Introduction
Supervised learning is used to guide human decisions across a wide range of
different fields. In sensitive areas such as healthcare or criminal justice, a key
issue is that these decisions are equitable and fair. To this end, an active area
of research investigates how fairness criteria can be incorporated into super-
vised learning (Berk, Heidari, Jabbari, Kearns, & Roth, 2018; Corbett-Davies,
Pierson, Feller, Goel, & Huq, 2017; Dwork, Hardt, Pitassi, Reingold, & Zemel,
2012; Kleinberg, Mullainathan, & Raghavan, 2016; Kusner, Loftus, Russell, &
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related work section, AB provided feedback throughout. LB, EJK, and AB prepared the data,
EJK implemented the analysis and created the figures using feedback from LB.
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Silva, 2017; Verma & Rubin, 2018). This literature has focused on supervised
learning for a single objective, assumed to be the target variable of interest.
Recently, however, Obermeyer, Powers, Vogeli, and Mullainathan (2019) ob-
served that, even when substantial care has been taken to develop a prediction
algorithm, unfairness in the predictions can still result due to measurement
error. Intuitively, calibrating decisions to be fair for an error-prone proxy does
not imply the decision is fair for the true variable of interest. Such effects can
be substantial; for example, Obermeyer et al. (2019) demonstrated a large dif-
ferential in predicted risk scores between black and white patients with equal
values on a new proxy measurement. However, these authors did not suggest
a method for dealing with this problem. This issue cannot be ignored because
fairness is generally conceptualized on a level more abstract than the proxy
label; for example, it is reasonable to require that fairness in a healthcare need
prediction system should extend to a person’s true health status.

This paper addresses the problem of prediction unfairness arising from mea-
surement error. By considering the supervised learning problem at the level
of a latent variable of interest, we reformulate the problem as one of adequate
measurement modeling. In effect, instead of requiring perfect measurement to
achieve fairness, we propose that researchers developing a prediction model to
be used for decision-making collect several independent, possibly error-prone,
measures of the variable of interest (e.g. health). We then suggest to combine
measurement models from the statistical literature with techniques from the
literature on fair ML to assess and ameliorate the problem of unfair predictions
in the face of measurement error.

Our contributions are as follows:

• We illustrate that existing methods to examine unfairness in error-prone
outcomes are insufficient;

• We suggest a framework, based on the existing measurement modeling
literature, to investigate and ameliorate such issues;

• We perform an example analysis to demonstrate the suggested approach.
In an existing healthcare application, this demonstrates that replacing
one proxy with another does not lead to parity, while our approach does.

In Section 6.2, we provide a summary of basic concepts in fairness. In
Section 6.3 prior approaches with respect to fair inference are discussed. In
Section 6.4, the failure of these approaches is discussed when making use of
proxies, and the proposed framework is introduced based on existing measure-
ment models. In Section 6.5 the proposed framework is then applied to the
exemplary data set provided by Obermeyer et al. (2019).

6.2 Problem definition
We consider probabilistic classification and regression problems with a set of
features X and true outcome Y ˚. Among the features, there is a sensitive
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feature S P X (e.g. race, gender), with respect to which discriminatory pre-
dictions are to be avoided. Furthermore, although the prediction problem is
with respect to the true outcome Y ˚ – e.g. “health” or “crime” – this out-
come is not directly observed; instead, we have observed a set of error-prone
proxy variables Y. For example, in practice a proxy for “health”, Y P Y, might
be the costs of healthcare or the number of chronic conditions experienced
by the patient, whereas, instead of “crime”, the number of arrests might be
measured. Following Nabi and Shpitser (2018), we represent the goal of the
regression or classification problem as a query on the (generative) joint distri-
bution p(Y ˚,X), potentially after conditioning on a set of “fixed” covariates
C, i.e. the (discriminative) conditional joint p(Y ˚,XzC | C). Typically, this
query will be the point prediction Ŷ ˚ := E(Y ˚ | X).

Following standard social-scientific measurement theory (Borsboom, 2006),
the fact that Y is a measurement proxy for Y ˚ is reflected by a causal model, in
the sense of Pearl (2013); Spirtes, Glymour, Scheines, and Heckerman (2000),
in which Y ˚ Ñ Y, i.e. the true outcome is a common cause of all avail-
able proxy variables. Because Y ˚ is an unobserved latent variable, our causal
model will be identifiable only through additional assumptions of conditional
independence; we discuss these assumptions later. The key point to note here
is that, generally, E(Y ˚ | X) ‰ E(Y P Y | X), i.e. predictions using error-
prone proxies as labels, Ŷ , will, of course, differ from the Ŷ ˚ that would have
been obtained had the true labels been available.

6.3 Related work
A large and growing literature on fairness of predictions for the error-free out-
come Y ˚ exists, with divergent and sometimes mutually exclusive definitions of
the notion of algorithmic fairness. An excellent overview of this literature can
be found in Verma and Rubin (2018), which identified 20 separate definitions.
Broadly, a distinction can be made between statistical metrics, distance-based
measures, and causal reasoning (Verma & Rubin, 2018).

Statistical metrics define fairness as the presence or absence of a (condi-
tional) independence in the joint distribution p(Y ˚, Ŷ ˚, S). For example, take
a classification problem in which the decision is taken as d := I(Ŷ ˚ ą τ),
where I is the indicator function and τ is some threshold on the predicted
score. Statistical parity (“group fairness”) is then defined as p(d = 1 |

S = s) = p(d = 1 | S = s1) for all s ‰ s1, i.e., the decision should
not depend on the sensitive attribute, whereas predictive parity is defined as
p(Y ˚ = 1 | d = 1, S = s) = p(Y ˚ = 1 | d = 1, S = s1) for all s ‰ s1—i.e. the
positive predictive value should not depend on the sensitive attribute. Further
definitions include conditional statistical parity (Corbett-Davies et al., 2017),
overall accuracy equality (Berk et al., 2018), and well calibration (Kleinberg
et al., 2016).

Distance-based measures of fairness account for the non-sensitive predic-
tors XzS, in addition to the observed and predicted outcomes and sensitive

113



attribute. The well-known “fairness through awareness” framework (Dwork
et al., 2012) generalises several of the preceding notions, such as statistical
parity, by defining fairness as “similar decisions for similar people”. Consider
a population of potential applicants P , and consider any randomised output
from the prediction algorithm, M(x P P ). Fairness is achieved whenever the
distance among the decisions M made for two people is at least as small as
the distance between these people, i.e. when D(M(x),M(y)) ď d(x, y) for any
x, y P P . Here, D and d are arbitrary metrics on the distance between outputs
and people, respectively. Careful choice of these metrics can yield some of the
above definitions as special cases. Since the fairness condition can be trivially
achieved, for example by always outputting a constant regardless of the input,
the prediction model should be trained by minimising a loss function under
the above constraint.

Finally, in recent years, results from the causal modelling literature have
been leveraged to define and achieve “counterfactual” fairness (Kusner et al.,
2017; Nabi & Shpitser, 2018). In these definitions one first considers a causal
model involving Y , XzS, and S such as Panel A of Figure 6.1. This causal
model then induces a counterfactual distribution pdo(s)(Ŷ

˚ | X), i.e. the distri-
bution we would observe if S were set to the value s (Pearl, 2013). Kusner et al.
(2017) then defined counterfactual fairness as pdo(s)(Ŷ ˚ | X) = pdo(s1)(Ŷ

˚ | X).
Note that this definition looks superficially similar to the definition of statistical
parity (group fairness), but is distinct because it refers to an individual. This
definition has as a disadvantage that any causal effect of the sensitive attribute
on the prediction is deemed illegitimate. Based on the same framework, Nabi
and Shpitser (2018) suggested a more general definition: some causal pathways
originating in S are denoted discriminatory, while others are not. Fairness is
then achieved by performing inference on a distribution p˚(Y ˚,X), in which
the “fair world” distribution p˚(Y ˚,X) is close in a Kullback-Leibler sense to
the original p(Y ˚,X), but all discriminatory pathways have been blocked (up
to a tolerance) using standard causal inference techniques. Note that, if all
causal pathways originating in S are deemed discriminatory and the tolerance
set to zero, the counterfactual fairness criterion by Kusner et al. (2017) will be
satisfied.
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Figure 6.1 Graphical representation of causal relations between the sensitive
feature (S), the predictors (X), and the error-prone outcome (Ŷ ˚) in the naive
case (A), in the measurement error framework (B), and in the measurement
error framework with differential item functioning on the Y1 proxy (C). The
dotted arrow indicates the discriminatory causal pathway (as in Nabi and
Shpitser (2018)) which is blocked when performing fair inference, evaluating
E[Y ˚ | X, S] to compute a risk score Ŷ ˚.

6.4 Proposed framework

6.4.1 Fair inference in error-prone outcomes

The existing methods from Section 6.3 do not consider the target Y ˚ to be
error-prone. However, in practice, the target feature Y P Y in the data set
is not a perfect representation of the true underlying outcome Y ˚. There
can be several sources for this imperfect representation. For example, the
true underlying outcome of interest may not be directly measurable at all
(i.e., Y ˚ ‰ Y for any possible Y ). In this case, the outcome of interest will
only partially explain any feature used as its proxy. For example, in using
healthcare costs Y as a proxy for health Y ˚, the observed value will in part be
determined by other factors besides Y ˚, such as the location of residence of the
patient. Then, even if the outcome of interest were “true healthcare costs” –
thus in principle measurable – the observed feature will in practice still not be
an infallible proxy, because health records are never perfect observations and
always contain some form of noise (Brakenhoff et al., 2018). Together, such
sources of noise in the observation process are termed “measurement error”,
and any outcome Y ˚ containing measurement error can be considered latent
(Borsboom, 2008) and modelled as such.

Crucially, the presence of measurement error may result in unfair inferences
for the error-prone outcome, even after applying the procedures presented in
Section 6.3 to account for unfairness. This is shown in a compelling example
by Obermeyer et al. (2019), who concluded that commercial algorithms used
by insurance companies for patient referral contain a fundamental racial bias.
In the algorithm under consideration, healthcare costs Y P Y are used as a
proxy for health Y ˚. Obermeyer et al. (2019) illustrated that although there is
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no bias in healthcare costs, there is strong racial bias in other proxies of health
such as whether patients have chronic conditions. Specifically, in order to be
referred to a primary care physician, the true underlying health status Y ˚ of
black patients was worse than that of white patients.

Obermeyer et al. (2019) concluded that fair inference requires selecting a
better proxy for health as the outcome variable Y ˚. Indeed, their analyses
were possible precisely due to the availability of different proxies of health,
such as the number of chronic conditions. However, we note that solving
racial bias in a new proxy does not guarantee the absence of racial bias in
other proxies indicating other aspects of health. Instead, here we suggest
incorporating several proxies, or indicators Y in a measurement model for
the unobserved, error-prone outcome Y ˚ (Kilbertus et al., 2017). In the next
section, we introduce the existing literature on measurement models and its
approach to fair inference.

6.4.2 Fair inference in measurement models

When outcomes are thought to be error-prone, an existing literature suggests
the use of measurement models (Brakenhoff et al., 2018; Fuller, 2009). At
their core, measurement models describe the causal relationship between ob-
served scores Y and error-prone unobserved “true scores” Y ˚ as Y ˚ Ñ Y. A
measurement model adequately represents the empirical conditions of measure-
ment if conditional independence can be assumed (Blalock & Blalock, 1968).
More specifically, measurement models assume that Y1 and Y2 are condition-
ally independent given Y ˚ (i.e., p(Y1, Y2 | Y ˚) = p(Y1 | Y ˚)p(Y2 | Y ˚)). A
plethora of variations of measurement models assuming conditional indepen-
dence have been developed, such as latent class models (McCutcheon, 1987),
item response models (Rasch, 1993), mixture models (McLachlan & Basford,
1988), factor models (Lord, 2012), structural equation models (Bollen, 1989),
and generalized latent variable models (Skrondal & Rabe-Hesketh, 2004).

Measurement models are suggested here as a convenient way to account for
a latent variable’s relationship to sensitive features. The measurement error of
a proxy variable (e.g. Y1) is then assumed to differ over different groups of S.
To account for group differences in proxy variables, a large body of literature
is available where this issue is known under different labels. Generally, these
approaches are applied within the structural equation modelling (SEM) frame-
work (Jöreskog, 1993), as SEM explicitly separates the measurement model
(Y ˚ Ñ Y) from the structural model (X Ñ Y ˚). Approaches for investigating
how features S influence Y ˚ are investigating item bias (Mellenbergh, 1989),
Differential Item Functioning (DIF) (Holland & Wainer, 1993) and measure-
ment invariance (Schmitt & Kuljanin, 2008). For an extensive overview of the
different approaches and their benefits and drawbacks, we refer to (Flore, 2018;
Schmitt & Kuljanin, 2008; Steenkamp & Baumgartner, 1998; Vandenberg &
Lance, 2000).
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6.4.3 Proposed method for fair inference on latent variables

We propose our framework for fair inference on outcomes which are measured
only through error-prone proxies. To clarify the framework and make it more
comparable to earlier work, we use the running example of health risk score
prediction from Obermeyer et al. (2019). Their healthcare data set contains
several clinical features X at time point t´1 (e.g., age, gender, care utilisation,
biomarker values and comorbidities) which are used to predict healthcare cost
Y ˚ at time t. In addition, the patient’s race is the sensitive feature S, coded as
S = b for black patients and S = w for white patients. The relations between
these features are shown in panel A of Figure 6.1.

Based on X, the expectation of a persons’ healthcare cost is used as a risk
score Ŷ ˚ := E[Y ˚ | X, S]. The risk score is used to make a decision D to
refer a patient to their primary care physician to consider program enrolment.
More specifically d = 1 if Ŷ ˚ is above the 55th percentile. In this setting,
attributes X can be legitimately controlled. However, conditional on X both
groups in S should have equal probability of being referred: P(d = 1 | X =
x, S = b) = P(d = 1 | X = x, S = w). As mentioned in Section 6.4.1 and shown
by Obermeyer et al. (2019), this procedure leads to bias in other proxies of Y ˚,
such as a patient’s number of chronic conditions.

Our proposed framework is a SEM implementation of the second and third
panels of Figure 6.1. The general structure of the model is that of a Multiple
Indicator, Multiple Causes (MIMIC) model: the outcome variable Y ˚ (e.g.,
health) has multiple proxy indicators (e.g., chronic conditions, healthcare costs,
hypertension), and the X features predict Y ˚ directly (thus the proxies only
indirectly). A graphical representation of the MIMIC SEM model is shown
in Figure 6.2. This implementation imposes additional assumptions on the
general causal graphs, most notably linear relationships between the variables
and the multivariate Gaussian residuals.

Fair inference on Y ˚ can be performed in the following way: during estima-
tion of the regression parameters (X Ñ Y ˚), health is conditioned on race, but
during prediction the path from Race to Health is blocked by setting S = b.
Following the notation of Nabi and Shpitser (2018), this yields a “fair world”
distribution p˚(Y ˚,X). The expectation Ŷ ˚ = E[Y ˚ | X, S] is then computed
from this distribution, meaning for two participants who differ only on S but
not on X, the risk score Ŷ ˚ will be exactly the same. Because the latent out-
come Y ˚ is modelled as a linear combination of the different proxies, the risk
score is a reflection of the underlying health rather than only health cost.

6.5 Experiments
In this section, we evaluate the proposed framework on an application of the
procedures discussed in this paper. We first prepare the data set as provided
by Obermeyer et al. (2019) to create a basic risk score based on healthcare
cost similar to the commercial risk score reported in their paper. Then, we
illustrate our argument from Section 6.4.1: we perform fair inference on the
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Figure 6.2 Structural equation model for the proposed framework on the
healthcare data set. For clarity, residual variances of the endogenous variables
are not drawn in the diagram. For more information on the variables used in
the model, see Obermeyer et al. (2019).
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proxy measure for health (healthcare cost) to show that this does not solve
the issue of unfairness in other proxy measures. This is a reproduction of the
results shown by Obermeyer et al. (2019). Next, we use the SEM framework
from Section 6.4.3 to show how including a formal measurement model for
Y ˚ – as in panel B of Figure 6.1 – can largely solve the issue of unfairness
in the proxies. Last, we show how existing differential item functioning (DIF)
methods in the SEM framework – panel C of Figure 6.1 – can aid in interpreting
the extent to which proxy measures contain unfairness. Fully reproducible R
code for this section is available as supplementary material to this paper at the
following DOI: 10.5281/zenodo.3708150.

6.5.1 Data preparation and feature selection

Log-transformations are applied to highly skewed variables at time-point t,
such as costs, to meet the assumption of normally distributed residuals in
regression procedures. As an additional normalisation step, the predictors at
time-point t ´ 1 are re-scaled to homogenise their levels of variance. The data
set is then split into a training and a test set. In this section, estimation is
always done on the training set and inference is done on the test set.

To simplify our proposed framework for the purpose of this application, we
select a subset of features at time-point t ´ 1 for prediction of the target of
interest at time point t, health. We want our procedure to be comparable to
the commercial algorithm which produces the risk scores described in Ober-
meyer et al. (2019). If the features we select are the same features used by
the commercial algorithm, then our procedure would yield very similar results
upon generating a risk score. Unfortunately, the predicted risk scores used by
Obermeyer et al. (2019) cannot be replicated exactly using the provided data
set.

To select the subset of predictor features for further use in our procedure, we
performed a LASSO regression (Tibshirani, 1996) where all available features at
time-point t ´ 1 are used as predictor variables, and the provided algorithmic
risk score at time-point t is used as a target. Following the guidelines by
Hastie, Tibshirani, and Friedman (2009), we used cross-validation to select the
optimal λ penalty value. This yields a set of non-zero predictors which predict
the algorithmic risk score well.

Spearmans rank correlation between the commercial and the replicated risk
score is high ρ = .82, indicating that the commercial and replicated risk scores
perform similarly in the rank-based cutoff applied in Obermeyer et al. (2019).
The predictors selected in this model are used as predictors X in the structural
equation models of the following sections.

6.5.2 Fair inference on cost as a proxy of health

Pane A of Figure 6.1 illustrates conditional statistical parity as defined by
Verma and Rubin (2018). Here, the outcome Y ˚ is conditioned on sensitive
feature S when estimating the coefficients of the prediction model (X Ñ Y ˚),
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Figure 6.3 Effect of parity correction in one proxy of health (healthcare
cost) on the race differences in another proxy of health (the number of chronic
conditions). From the replicated risk score to the parity-corrected risk score,
the cross-race difference becomes slightly smaller but does not disappear.

and during prediction all subjects are assumed to have the same level of S, e.g.,
S = b, such that P(Y ˚ = y˚ | X = x, S = b) = P(Y ˚ = y˚ | X = x, S = w).

Accounting for sensitive feature ‘Race’ by conditioning the outcome ‘Repli-
cated Risk score’ on ‘Race’ when estimating the model and being excluded
during prediction reduces the extent of the problem. Figure 6.3 illustrates
that although the results improve compared to not including ‘Race’ at all,
conditional statistical parity is still not met. As a consequence, individuals
belonging to S = b will still have a lower health status when being selected for
intervention.

6.5.3 Fair inference on latent health

A cause for the fact that conditional statistical parity is not met when following
Pane A of Figure 6.1 can be that Ŷ ˚ is a (bad) proxy. Instead of using one bad
proxy, it is better to use multiple (bad) proxies as indicators of an unobserved
latent variable measuring ‘true health’. How such a model can be specified is
illustrated in Pane B of Figure 6.1. Similarly to Verma and Rubin (2018), the
sensitive feature is excluded during prediction.

Figure 6.4 shows the effect of including a measurement model in construct-
ing risk scores. This figure illustrates that using a measurement model with
multiple imperfect measurements of health as indicators for ‘true health’ sub-
stantially improves conditional statistical parity. The improvement has been
more compared to accounting for the sensitive feature. By using this mea-
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Figure 6.4 Effect of including a measurement model in constructing risk
scores. The first panel shows the uncorrected risk score based on healthcare
cost, the middle panel shows the same risk score but corrected for the sensitive
feature, and the third panel shows the corrected risk score based on the latent
health outcome using a measurement model.

surement model, the problem that individuals belonging to S = b had a lower
health status when being selected for intervention is minimised.

6.5.4 Investigating unfairness in proxies

When using a measurement model with multiple imperfect measurements of
health as indicators of ‘true health’, differences in measurement error over the
different groups of the sensitive feature can still be present. Panel C of Figure
6.1 illustrates how differences over the sensitive feature groups in the error
prone indicator variables can be incorporated directly when estimating ‘true
health’. For example, differences in measurement error of healthcare cost can
be present for the different groups of Race.

Including a DIF parameter δ on the healthcare cost variable yields a model
which fits significantly better on the test set than the model without the DIF
parameter (χ2(1) = 50, p ă 0.001). The value of the DIF parameter on cost
is estimated as δ = 0.198 (95% CI = [0.172, 0.225]). This means that for the
same level of health, the log-healthcare costs of the white race class in this data
set is estimated to be 0.198 higher. This means that the cost of healthcare for
white patients is (e0.198´1) ¨100% = 21.9% higher than that for black patients,
given an equal level of health as measured by the measurement model (95% CI
= [18.7, 25.2]).

Applying the same procedure to the other indicators leads to estimates of
DIF for those indicators. The results are shown in Table 6.1. This table shows
that some proxies have stronger DIF than others, meaning some proxies are
more unfair than other proxies. Notable, the avoidable healthcare cost and the
renal failure items have low levels of DIF for Race, whereas the healthcare cost
and the number of active chronic conditions have strong DIF.

121



Table 6.1 Estimated differential item functioning parameters for each in-
dicator (proxy) of health. δ parameters should be interpreted as the mean
deviation of the black patients compared to the white patients given health.

Indicator δ 2.5% 97.5%
No. active chronic conditions 0.453 0.364 0.541
Mean blood pressure -0.262 -0.320 -0.204
Diabetes severity (HbA1c) -0.343 -0.391 -0.296
Anemia severity (hematocrit) 0.250 0.231 0.268
Renal failure (creatinine) -0.019 -0.025 -0.014
Cholesterol (mean LDL) -0.235 -0.317 -0.153
Healthcare cost (log) 0.198 0.172 0.225
Avoidable healthcare cost (log) -0.052 -0.096 -0.008

6.6 Conclusion
In this paper, we have argued that when measurement error is at play, per-
forming fair inference on a proxy measure of the outcome is insufficient to
achieve a fair inference on the true outcome. This manifests itself, as shown in
Obermeyer et al. (2019), as unfairness in other proxy measures of the outcome
of interest. Alternatively, in this study we proposed to make use of existing
measurement models containing multiple error-prone proxies for the outcome
of interest. In addition, fair inference can be accounted for in each of these
proxies simultaneously if needed by allowing for measurement error in prox-
ies to differ over groups of a sensitive feature. We provided a framework to
perform these estimations and applied this framework to the exemplary data
set provided by Obermeyer et al. (2019). Here, it was concluded that fair in-
ference was accounted for when multiple proxies were used in a measurement
model instead of a single proxy. Additionally accounting for differences in mea-
surement error over race groups was not needed to further improve fairness in
predicted risk scores, although substantive group differences were found for
some proxies.
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A.1 Adaptive first-order optimizers
We suggest using adaptive first-order optimizers to extend SEM beyond the
existing estimation methods. Adaptive first-order optimizers are a class of
optimization algorithms designed to work even under nonconvexity and non-
smoothness. Some early algorithms such as RMSProp (Tieleman & Hinton,
2012) were originally developed with deep learning in mind, where noncon-
vexity, non-smoothness, and high-dimensional parameter spaces are common.
Therefore, we consider these methods excellent candidates for estimating an
expanding class of SEM models, as they have historically done for neural net-
works. The idea of using first-order optimizers for SEM is by no means new
(Lee & Jennrich, 1979), but the recent developments in this area have made it
a feasible approach.

The simplest first-order optimizer is gradient descent, which uses the gradi-
ent g(θ) of the objective with respect to the parameters to guide the direction
that each parameter should move towards. The gradient is combined with a
step size s so that in each iteration i of gradient descent the parameters are
moved a small amount towards the direction of the negative gradient evaluated
at the current parameter values:

θ(i+1) = θ(i)
´ s ¨ g(θ(i)) (A.1)

This algorithm has a similar structure to the Newton-Raphson method
shown in Equation 2.6. In that algorithm, the step size s in each iteration
is replaced by the inverse of the Hessian matrix. Gradient descent is thus a
simplified version of the methods currently in use for optimizing SEM. Because
it does not use the Hessian, it continues to function when the objective is not
smooth or not convex. Computationally, it is also more tractable, foregoing the
need to compute the full Hessian matrix. However, it is necessary to determine
the correct step size s. This is not a trivial problem: with an improperly tuned
step size, the algorithm may never converge.

One of the state-of-the art adaptive first-order optimizers is Adam (Kingma
& Ba, 2014). It introduces two improvements to the framework of gradient
descent (Figure A.1). Firstly, it introduces momentum, where the direction in
each iteration is not only the negative gradient of that iteration, but a moving
average of the entire history of gradients. Momentum allows Adam to move
through local minima in the search for a global minimum by smoothing the path
it takes in the parameter space. Secondly, Adam introduces a self-adjusting
step size for each parameter, which is adjusted based on the variability of the
gradients over time: if the variability of the gradient of a parameter is smaller,
Adam will take larger steps as it has more certainty about the direction the
parameter should move in (and vice versa). This self-adjusting step size takes
the place of computing and inverting the Hessian matrix. By using both the
first and second moments of the history of the gradients, Adam is an adaptive
optimizer capable of reliably optimizing a wide variety of objectives.

A relevant parallel to the development of adaptive first-order optimizers
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for deep learning is the recent advances in Bayesian SEM (Merkle & Rosseel,
2015) and Bayesian posterior sampling in general. Here, too, the objective
function may be nonconvex, e.g., in hierarchical models and with nonconju-
gate priors. Such objective functions may lead to inefficient behaviour for the
Markov Chain Monte Carlo (MCMC) methods used to approximate posterior
expectations. For this problem, Hamiltonial Monte Carlo (HMC) (Betancourt,
2017) has been developed, which introduces momentum in the proposal of a
sample, thereby more efficiently exploring the posterior. This is the method
implemented in Stan (Carpenter et al., 2017), which works for situations with
many parameters and hyperparameters.

Adaptive first-order optimizers are one part of a pair of improvements that
have enabled rapid growth of the deep learning field. The other is the devel-
opment of computation graphs, an intuitive way of specifying the objective
such that gradients can be computed automatically. Automatic gradient com-
putation can enable a wide range of extensions to SEM without having to
analytically derive the gradient and Hessian for each separate extension. In
the next section, we explain the concept behind computation graphs and how
they can be combined with optimizers such as Adam.
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Figure A.1 Three first-order algorithms finding the minimum of F (θ) =

θ21 + 5θ22 with starting value θ̂ = [´0.9,´0.9]. Gradient descent uses the
gradient and a fixed step size (s = 0.01) to update its parameter estimates.
Gradient descent with momentum instead uses an exponential moving average
of the gradients (decay of 0.9) with the same s. Finally, Adam adds a moving
average of the squared gradient (decay of 0.999) to adjust the step size per
parameter, leading to a straight line to the minimum with an overshoot and
return due to momentum. In this example, Adam converges fastest, and
gradient descent is slowest.
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A.2 PyTorch estimation validation

A.2.1 ML-SEM estimation

We first validated our PyTorch implementation of default SEM through com-
paring the parameter estimates and their standard errors to two example mod-
els from the lavaan package: the Holzinger-Swineford model and the Political
Democracy model. For more information about these models, see Rosseel
(2012). The reproducible code for these models can be found in the supple-
mentary material. The results are shown in Figure A.2.
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Figure A.2 Comparison of parameter estimates and their 95% confidence
interval for the Holzinger-Swineford and Political Democracy models. The
plots show that both methods arrive at the same solution.

From this validation, we conclude that computation graphs and Adam op-
timization are together capable of estimating structural equation models. In
addition, as the solution obtained by PyTorch is the same as with other pack-
ages, it is possible compute the value of the log-likelihood objective function
and its derivative fit measures such as χ2, AIC, and BIC.

A.2.2 LASSO regularization

In this example, we show how LASSO penalization on the regression param-
eters in tensorsem compares to regsem (Jacobucci et al., 2016) and glmnet
(Friedman et al., 2010). For this, we generate data with a sample size of 1000
from a regression model with a single outcome variable, 10 true predictors, and
10 unrelated variables. The resulting parameter estimates for the three differ-
ent estimation methods are shown in Table A.1. The table shows that with the
chosen penalty parameter (0.11 for regsem and PyTorch, 0.028 for glmnet due
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to a difference in scaling), the estimates are very close in value. As expected,
some parameters are shrunk to 0 for all three methods.

Table A.1 Regularization with glmnet, regsem, and PyTorch. Table indicates
parameter estimates for a LASSO penalized regression model with 20 pre-
dictors. PyTorch is compared to existing approaches and shown to provide
similar parameter estimates. (dot indicates 0)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
glmnet . .07 .10 .07 .20 .23 .34 .13 .31 .17 -.03 .02 .05 . . . . . . .
regsem . .07 .10 .08 .20 .23 .34 .13 .31 .17 -.03 .02 .05 . . . . . . .
PyTorch . .07 .10 .07 .20 .23 .34 .13 .31 .17 -.03 .02 .05 . . . . . . .
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B.1 Symmetry pattern recovery with default EFA
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Figure B.1 Predicted correlation matrix for EFA models with M factors
for the example observed correlation matrix of Figure 1 in the main text.
Proper recovery of the observed pattern happens around 12 factors (bottom
left frame).
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B.2 Comparing EFA and EFAST in factor loading estimation
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Figure B.2 Factor loading median absolute error over different conditions
of factor loading and factor correlation strength (top-to-bottom, see labels
on the right) and different factors (left-to-right, see labels on top).
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B.3 Sample size in factor loading estimation error

Bilateral Factor 1 Bilateral Factor 2 Bilateral Factor 3 Lateral Factor

N =  650
N =  130

N =  65

0.0 0.1 0.2 0.3 0.4 0.0 0.1 0.2 0.3 0.4 0.0 0.1 0.2 0.3 0.4 0.0 0.1 0.2 0.3 0.4

0.0

0.1

0.2

0.3

0.0

0.1

0.2

0.3

0.0

0.1

0.2

0.3

Contralateral homology correlation

M
ea

n 
ab

so
lu

te
 e

rr
or

Model type EFA EFAST

Loadings = 0.7, covariance = 0.5

Estimation error of factor loadings

Figure B.3 Factor loading median absolute error over different sample sizes
(top-to-bottom, see labels on the right) and different factors (left-to-right,
see labels on top).
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B.4 Sample size and model estimation convergence
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Figure B.4 Convergence rates of EFA and EFAST for different sample sizes
(left-to-right, see labels on top). Convergence probability is not only de-
termined by the sample size, but also by other factors such as the amount
of latent covariance, the strength of the factor loadings, and the amount of
symmetry.
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B.5 Information criterion factor extraction performance
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Figure B.5 Number of extracted factors using the AIC (left panel), BIC
(middle panel), and sample-size adjusted BIC (right panel) criterion. AIC
works well for the EFAST method but not for the EFA method. BIC slightly
underextracts for both methods. SSABIC shows excellent performance for
both methods. The true number of factors is 4 (dashed line), for which
this result holds; different simulation situations may show different factor
extraction patterns.
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B.6 Factor loadings for empirical application

Table B.1 Factor loadings for 6-factor model fitted using EFAST and EFA
on the Cam-CAN volume data. Loadings with absolute value below 0.3 not
shown.

EFAST EFA
F1 F2 F3 F4 F5 F6 F1 F2 F3 F4 F5 F6

lh_bankssts 0.38 0.6 0.79
lh_caudalanteriorcingulate -0.4 0.55

lh_caudalmiddlefrontal 0.73 0.74
lh_cuneus 0.91 0.87

lh_entorhinal 0.31
lh_fusiform 0.4 0.38

lh_inferiorparietal 0.69 0.67
lh_inferiortemporal 0.4 0.54

lh_isthmuscingulate 0.44
lh_lateraloccipital 0.45 0.37 0.46

lh_lateralorbitofrontal 0.78 0.71
lh_lingual 0.71 0.7

lh_medialorbitofrontal 0.65 0.63
lh_middletemporal 0.31 0.66 0.81

lh_parahippocampal 0.37
lh_paracentral 0.83 0.73

lh_parsopercularis 0.79 0.72
lh_parsorbitalis 0.61 0.63

lh_parstriangularis 0.84 0.89
lh_pericalcarine 0.91 0.91

lh_postcentral 0.8 0.37 0.33
lh_posteriorcingulate 0.72 0.52

lh_precentral -0.3 0.87 -0.34 0.72
lh_precuneus 0.76 0.74

lh_rostralanteriorcingulate 0.59 0.49
lh_rostralmiddlefrontal 0.78 0.82

lh_superiorfrontal 0.88 0.93
lh_superiorparietal 0.72 0.77

lh_superiortemporal 0.77 0.52 0.41
lh_supramarginal 0.77 0.32

lh_frontalpole 0.32 0.51
lh_temporalpole 0.39 0.34

lh_transversetemporal 0.72 0.43 0.53
lh_insula 0.78 0.7

rh_bankssts 0.71 0.69
rh_caudalanteriorcingulate 0.73 0.48

rh_caudalmiddlefrontal 0.76 0.74
rh_cuneus 0.71 0.72

rh_entorhinal 0.34 0.34
rh_fusiform 0.5 0.4

rh_inferiorparietal 0.31 0.7 0.67
rh_inferiortemporal 0.31 0.38 0.58

rh_isthmuscingulate 0.45
rh_lateraloccipital 0.47 0.37 0.47

rh_lateralorbitofrontal 0.73 0.72
rh_lingual 0.66 0.68

rh_medialorbitofrontal 0.74 0.67
rh_middletemporal 0.66 0.75

rh_parahippocampal 0.39
rh_paracentral 0.83 0.65

rh_parsopercularis 0.76 0.68
rh_parsorbitalis 0.62 0.82

rh_parstriangularis 0.71 0.8
rh_pericalcarine 0.77 0.82

rh_postcentral 0.77 0.31 0.35
rh_posteriorcingulate 0.57 0.44

rh_precentral 0.96 -0.31 0.83
rh_precuneus 0.76 0.72

rh_rostralanteriorcingulate 0.44 0.51
rh_rostralmiddlefrontal 0.7 0.68

rh_superiorfrontal 0.95 0.81
rh_superiorparietal 0.82 0.71

rh_superiortemporal 0.91 0.39 0.46
rh_supramarginal 0.82 0.36 0.43

rh_frontalpole
rh_temporalpole 0.34

rh_transversetemporal 0.78 0.39 0.43
rh_insula 0.73 0.69
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Appendix C

Privacy-Preserving Generalized Linear Models

using Distributed Block Coordinate Descent:

Supplementary proof and simulation
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C.1 Proof for recovery of standard errors

Let A = XTX, partitioned into four submatrices A11 (held by Alice), A22

(held by Bob), and A22 (unknown to either). The standard inverse of such a
partitioned, positive definite symmetric matrix is

A´1 =

(
B11 B12

B22 B22

)
=

( (
A11 ´ A12A

´1
22 A

T
12

)´1
´A´1

11 A12

(
A22 ´ AT

12A
´1
11 A12

)´1

´A´1
22 A

T
12

(
A11 ´ A12A

´1
22 A

T
12

)´1 (
A22 ´ AT

12A
´1
11 A12

)´1

)
(C.1)

Following the procedure outlined in Section 3.3, Alice replaces X2 with
V2 = R2X2, and Bob replaces X1 with V1 = R1X1, where Rj are unknown
orthogonal rotation matrices. This gives two new matrices, A(1) and A(2), and
their inverses, B(1) and B(2). By substition,

A
(1)
12 = XT

1 R2X2

A
(1)
22 = XT

2 R
T
2 R2X2

(C.2)

So that

B
(1)
11 =

(
A

(1)
11 ´ A

(1)
12 (A

(1)
22 )

´1(A
(1)
12 )

T
)´1

=
(
(XT

1 X1) ´ (XT
1 R2X2)(X

T
2 R
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1 X1) ´ (XT
1 X2)(X
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1 X2)
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22 A

T
12

)´1

= B11

(C.3)

This shows that the part of the usual ACOV to do with β̂1 can be estimated
correctly, and therefore the standard errors are available: ACOV(β̂j) = σ2Bjj .
Moreover,

B
(1)
21 = ´(A

(1)
22 )

´1(A
(1)
12 )

TB11

= ´(RT
2 R2)

´1R2B21

(C.4)

so that [
(ZTZ)´1ZT y

]
p1

= B11X
T
1 y ´ (RT

2 R2)
´1RT

2 R2B
T
21X

T
2 y

= B11X
T
1 y ´ BT

21X
T
2 y

= β̂1

(C.5)

This shows that the exact same estimates are obtained for β̂1. The same proof
can be given for Bob and β̂2.

Note further that:
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1. Alice cannot get β̂2 right because R2 does not drop out in the other’s
part of the vector

2. We cannot get the ACOV of (β̂1, β̂2) for this same reason

C.2 MSE of rank-R data approximation
The goal of this appendix is to show empirically the amount of explained
variance when a set of parameters and their associated predictions are shared
with another party. From Equation 11, but assuming all in-between parameter
estimates β̂

(r)

a are shared, Bob can create the following approximation:

Ŷ a = XaB̂a

X̂a = Ŷ aB̂
+

a

(C.6)

where Ŷ a P RNˆR, Ba P RPˆR, Xa P RNˆP , all matrices are full rank,
and A+ indicates the Moore-Penrose pseudoinverse of A. For simplicity, but
without loss of generality, we assume here that the variance of all the features
in Xa is the same, σ2

a, and these features are uncorrelated.
The relation between P , R, and the accuracy of the approximation X̂a is

as follows: as R Ñ P , the MSE improves linearly, with perfect approximation
being achieved when R = P . As mentioned in-text, when P = 1, sharing
one set of parameters (R = 1) means the data can be recovered completely.
Empirical simulations show that the relation between R, P , and expected mean
square error of approximation is MSE = σ2

a(1´R/P ), where σ2
a is the variance

of the features in Xa (see Figure C.1).
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Figure C.1 Mean square error (MSE) of the approximation of the data
Xa at Alice by Bob if B̂a is known. Xa was simulated as having P = 20
uncorrelated features with variance σ2

a = 2. Note that the approximation
linearly improves as the rank of B̂a increases, with a perfect approximation
reached when R = P . Dashed line indicates expected MSE, using the formula
E[MSE] = σ2

a(1 ´ R/P ).
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Phrasing the above in terms of information sharing and privacy preser-
vation: in sharing R sets of parameter estimates β̂

(r)

a with their associated
predictions ŷ(r)

a , Alice reveals a proportion of at least R/P of variance in the
data. This proportion is a lower bound: in case there are correlations among
the features of Alice, this proportion increases. When R = P the data of Alice
can be reconstructed by Bob. When either of a pair (β̂

(r)

a , ŷ(r)
a ) are shared but

not the other, no information is revealed.
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Developed software

Software is a vital part of the current open-access, open-source, re-
producible workflow of scientific research – especially in the field
of statistics. Throughout my PhD, I have worked on several soft-
ware projects, either directly or partially related to my research.
In this chapter, I shortly outline the different software projects I
have worked on. All projects are released under a permissive open-
source license and easily accessible for others to use and improve
upon.

JASP

https://jasp-stats.org/
During my PhD, I have contributed one day per week to the JASP statistics
project, an open-source, free, friendly statistics program. At JASP, among other
things I have implemented logistic regression, confirmatory factor analysis,
and structural equation models, I have improved exploratory factor analysis,
principal components analysis and descriptive statistics, and I have made a few
improvements to the underlying infrastructure of the program.

tensorsem

https://github.com/vankesteren/tensorsem
R and Python package for structural equation modeling using Torch. The R
interface parses lavaan code to create a structural equation model native to
the pytorch machine learning framework. This model can then be estimated
and extended using techniques from the field of deep learning, as implemented
in pytorch.

cmfilter

https://github.com/vankesteren/cmfilter
R package to discover mediators among many potential variables. The internal
routines are optimized C^+ code using the Armadillo linear algebra library and
OpenMP parallelization pragmas. Because of this, it scales well to many cores,
and has even been used on high-performance computing facilities such as the
SurfSara Lisa compute cluster.
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efast

https://github.com/vankesteren/efast
R package for exploratory factor analysis with structured residuals. Built on
top of lavaan for maximum compatibility with existing structural equation
models, but with a few stability and speed improvements applied, such as
boundaries for the estimated residual covariances.

privreg

https://github.com/vankesteren/privreg
R package for privacy-preserving generalized linear models using coordinate
descent. Full two-party privacy-preserving computation, using AES encryption
for the communication. Built on native R glm procedures.

firatheme

https://github.com/vankesteren/firatheme
R package for a clean and colourful ggplot2 theme using open-source Fira
fonts. I have used firatheme throughout this thesis, and it has been used in
publications by several other researchers.

rpeaks

https://github.com/vankesteren/rpeaks
R package for fast detection of heartbeats in electrocardiogram data. A reim-
plementation (in optimized C^+ code) of the famous Pan-Tompkins algorithm
(Pan & Tompkins, 1985) to analyze ambulant ECG measurements of several
days.

Massign

https://github.com/vankesteren/Massign
R package for simple matrix construction for prototyping. Introduces into R the
%^-% operator for matrix assignment, with convenient shortcuts for symmetric
matrices.

vennvis

https://github.com/vankesteren/vennvis
R package for Venn diagram visualisation of variable covariances. Displays two
to three variables as Venn diagrams, where the area of the circles is propor-
tional to the variance of each variable, and the overlap is proportional to the
covariance. The layout is computed using line search optimization.
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Rijkspalette

https://github.com/vankesteren/rijkspalette
R package to generate colour palettes for graphs using Rijksmuseum paint-
ings. Interfaces with the excellent API of the Rijksmuseum to fetch paintings,
and then performs k-means clustering on their colour pixels in a*b* space for
determining the colour palette.
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Nederlandse samenvatting

Structurele vergelijkingsmodellering (Structural Equation Modeling; SEM) is
een flexibele en populaire methode voor data-analyse in de sociale- en ge-
dragswetenschappen. SEM is vooral geschikt voor onderzoekssituaties waarin
concepten niet direct gemeten kunnen worden, of waarin de meetinstrumenten
foutgevoelig zijn. Denk hierbij aan concepten als “vertrouwen” of “welvaart”
die indirect gemeten worden met vragenlijsten. Maar het moderne dataland-
schap verandert, en SEM bereikt daarin haar grenzen: klassieke vragenlijston-
derzoeken en experimenten worden aangevuld met (en soms zelfs vervangen
door) metingen uit registerdata, draagbare sensoren, foto’s, internetdatabases,
genetische sequenties, geavanceerde brein-beeldvormingstechnieken, en meer.
De SEM methode is hiervoor niet altijd beschikbaar, maar de problemen van
foutgevoelige metingen zijn in dit soort moderne data onverminderd groot en
veel onderzoeksvragen gaan nog altijd over relaties tussen moeilijk meetbare
concepten. Analyses die gebruik maken van SEM zijn hierdoor van grote
waarde voor onderzoek met zulke nieuwe meetinstrumenten. Het doel van
dit proefschrift is dan ook om SEM analyses beschikbaar te maken voor een
groter bereik aan moderne datasets. Om dit doel te bereiken presenteer ik
verschillende oplossingen voor problemen die men tegenkomt bij het toepassen
van SEM op zulke datasets.

In Hoofdstuk 2 introduceer ik ten eerste een methode om structurele ver-
gelijkingsmodellen op een nieuwe manier te specificeren en schatten. Hierbij
leen ik methodologie uit het veld van “deep learning” en neurale netwerken.
Met deze methode worden aanpassingen zoals regularisatie – wat veel gebruikt
wordt voor moderne data-analyse – in één keer beschikbaar voor SEM. Ik toon
dit aan door middel van drie verschillende voorbeelden waarin ik nuttige, niet
eerder vertoonde uitbreidingen maak voor klassieke structurele vergelijkings-
modellen.

In Hoofdstuk 3 ontwikkel ik een algoritme om mediatie-analyse (een spe-
ciaal geval van SEM) uit te voeren op hoog-dimensionele, epigenetische se-
quentiedata. Het probleem bij deze data is de grote hoeveelheid metingen per
observatie, tot wel honderdduizenden waarden. Het algoritme dat ik ontwikkel
is een alternatief voor de klassieke SEM schattingsmethode, welke überhaupt
niet met dit soort situaties om kan gaan. Ik maak gebruik van de grote hoe-
veelheid computerkracht die beschikbaar is om een benadering te maken van
“gewone” mediatieanalyse en ik toon aan dat dit in bepaalde situaties beter
werkt dan andere beschikbare methoden voor zulk onderzoek.
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In Hoofdstuk 4 ontwikkel ik een uitbreiding voor exploratieve factoranalyse
(EFA; een ander speciaal geval van SEM) voor brein-beeldvormingsdata. Pro-
cedures als factoranalyse worden veel gebruikt bij dit soort data omdat het de
hoeveelheid data vermindert met zo min mogelijk verlies van informatie – een
belangrijke stap voor vervolgonderzoek naar bijvoorbeeld de ontwikkeling van
het brein. De uitbreiding die ik presenteer maakt gebruik van de specifieke
voorkennis dat het brein nagenoeg symmetrisch is, iets wat nog niet eerder is
gedaan in de context van EFA. Met verschillende voorbeelden van structurele
en functionele breindata toon ik de flexibiliteit van de uitbreiding, en ik laat
zien dat deze methode een verbetering is ten opzichte van standaard EFA.

In Hoofdstuk 5 presenteer ik een oplossing voor het probleem van data-
analyse in de context van verticaal gedistribueerde data, dat wil zeggen tabel-
len waarbij de kolommen op verschillende plaatsen zijn opgeslagen. Dit komt
bijvoorbeeld voor in privacygevoelige situaties met medische data. De oplos-
sing stelt twee partijen in staat om samen een gegeneraliseerd regressiemodel te
schatten – inclusief standaardfouten – door enkel hun lineaire voorspelling van
de uitkomstvariabele te delen. Met enkele toegepaste voorbeelden presenteer ik
een implementatie van deze oplossing, inclusief encryptie om de gedistribueerde
berekeningen veilig uit te voeren.

Tot slot stel ik in Hoofdstuk 6 een structureel vergelijkingsmodel voor om
een ander modern dataprobleem aan te pakken: algoritmische rechtvaardig-
heid. Dit hoofdstuk is gebaseerd op een situatie waarin medische voorspellin-
gen op basis van registerdata leiden tot een bevooroordeelde behandeling van
blanke patiënten ten opzichte van zwarte patiënten. Door gebruik te maken
van een klassiek latente variabelemodel in combinatie met bestaande technieken
voor rechtvaardige machine learning verdwijnt het probleem in een toegepaste
dataset vrijwel volledig.
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ing new statistical procedures. His thesis was written at UMC
Utrecht (Julius Center) on the effect of bivariate covariance on
feature selection for class prediction models in high-dimensional ge-
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the early-career section of the Netherlands Society for Statistics and
Operations Research (VVSOR).
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meer doen. Bedankt natuurlijk voor die samenwerking, maar ook zeker voor
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