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Setting the stage



Policy evaluation setting

e Follow a unit over
tmel1<t<T

* There Is a policy
Intervention at T,

* What Is the causal
effect 6, of the
intervention (at time
t > Ty)?

Panel data for proposition 99

ttttt



Policy evaluation setting

« We measure an outcome Y
 Causal estimand: treatment effect attimet > T,

Ht — Ytl _ YtO

« Fundamental problem of causal inference:

- for t < T, observe only ¥
- for t > T, observe only Y} ()



t | Y, | Y2 |7
1 7 7 NA
2 9 9 NA
3 6 6 NA
4 5 5 NA
T, 6 6 NA
6 2 NA 2
7 3 NA 3
8 1 NA 1

NA

The problem of estimating
the effect of a policy
intervention is equivalent
to the problem of
estimating Y;°



Counterfactual estimators

* Now we're doing counterfactual estimation

e There are about a million of these methods

Matrix completion, fixed effects models, matching, diff-
in-diff, standard imputation methods, (Bayesian
structural) time-series models, ...



The Synthetic Control Method



Synthetic controls

» Synthetic control: use J “donor units” to estimate Y;°

- different states, different schools, different persons which did
not receive the intervention

* Let’s call their outcomes C;; for donor unit j at time ¢, then we
only need to compute the following weighted sum:
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Estimating the weights

« Which combination of donor units is the best
approximation of the true Y,°?

 Original synthetic control method says:
* Synth. control should “look like” intervened unitat t < T,
 Avoid extrapolation



Estimating the weights

e Collect P variables about intervened unit in a column vector
(X1), and the same variables about the donor unitsina P x|
matrix (X0)

 E.g., state size, average income, demographics, a selection or
summary of pre-intervention outcomes (there are \oads of

. 10
discussions what
include here

* Then, estimate weights such that ||[X1 — X0w]||5 is as small as
possible (THIS IS ORDINARY LEAST SQUARES REGRESSION)



Estimating the weights

« But this is high-dimensional regression: weights not unique

 If ] > P there are infinitely many solutions where
1X1 - X0w||3 =0

 We need additional information to determine which
combination of donors is best

(you can do sparse linear regression like LASSO, regularized
horseshoe priors, adaptive LASSO, or other interesting things)



Convex hull constraint

« SCM additional constraint: no extrapolation
* Ensures that synthetic control unit “could plausibly exist”

« Convex hull condition, ensuring:

* Ljgwj =1

« Constrained OLS, solved using a quadratic program
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Estimating the weights

 This constraint creates sparsity as well!

* If treated unit is outside convex hull, we will get
o |X1—XOw|2 =0
« YI(w;>0)=P

« Wonderful! Interpretable synthetic control!



Simple simulation

« Random normal data for
X1 and X0

- w = [.20,.35,.45,0,0, ..., 0]
+] =50,P =7

« Use synthetic control to
estimate weights

« What's happening to my
weights!?!?

sity
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We are in the convex hull



Probability of being in convex hull

« With more donors,
P(in convex hull)
Increases

 In one application, |
had >3000 donors
(Dutch schools)

* This Is common in
studies with register
data

Probability of being in convex hull
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Probability of being in convex hull as a function of num donors
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Problem in convex hull

Covariate values of treated and donor units

« Again, infinitely many
solutions where
1X1 — X0wl|% =0

e Even with the
additional SCM
constraint

covariate 2
| | | | |

00 05 10 15 20 25 3.0

« So we need something | |

else -1 0 1 2 3

covariate 1



Penalized synthetic control

Prefer nearest neighbours (Abadie & L'Hour, 2021)

Minimize
1X1 — X0wl|5 + 1 - ijum —Xojuz
j€J
subject to

JEJ



Penalized SCM: advantages

 Weights are well-defined always (!)

« Smoothly interpolate between synthetic control and NN

matching
« When A = 0 pensynth equals synthetic control
« When A = o pensynth equals nearest neighbour matching

« Can deal with multiple treated units



pensynth
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pensynth R package

« Efficient and fast implementation
 Using state-of-the art QP solver clarabel, written in Rust
« Using sparse matrices for the constraints
« Handles hundreds-thousands of donor units with ease

« Easy-to-use and convenient, understandable
 Plotting, summarization, nice methods

« Simulated data built-in
« Hold-out validation on pre-intervention outcome for tuning A

« On CRAN: https://doi.org/10.32614/CRAN.package.pensynth



https://doi.org/10.32614/CRAN.package.pensynth
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Conclusion



 Synthetic control is popular for policy evaluation

« Counterfactual estimation method

* It is ill-defined when the treated unit is in the convex hull
« Penalized synthetic control helps with this

Future work:
« Enable multiple simultaneous treated units
« Temporal cross-validation for hyperparameter tuning

* Inference through conformal prediction intervals
(some bootstrap parts in there too?)

« Formalize when exactly this is “better” and why
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